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summary

We have analyzed some DE models, in which the DE densities dependence on
the Hubble functions is motivated from RGE in QFT in curved space-time.

We have seen that observational data let us exclude DC1-type models (contrary
to what some authors advocate).

DC2 models are also ruled out. They are unable to fit at the same time the low
and high-redshift data.

DA models may offer an appealing and phenomenologically consistent
perspective for describing DE.

In fact, they fit pretty better the experimental data than the LCDM concordance
model. The v, = 0 (ACDM) region is disfavored at ~3c level!



summary

We have analyzed some DE models, in which the DE densities dependence on
the Hubble functions is motivated from RGE in QFT in curved space-time.

We have seen that observational data let us exclude DC1-type models (contrary
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DC2 models are also ruled out. They are unable to fit at the same time the low
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DA models may offer an appealing and phenomenologically consistent
perspective for describing DE.
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They could also explain the current phantom/quintessence-like behavior of the
DE.
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