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Hierarchical RNA Folding

• RNAs fold hierarchically

• To predict 3D structure, assume we know 2D structure



Sampling Approach

Sample structures rather than predicting the optimal structure.

Monte Carlo (MCMC) approach:

1 Create a model

2 Evaluate energy

3 Accept / Reject

4 Perturb model

5 Go to step 2



Coarse Graining

Conformation space is of RNA 3D structures is too large for
efficient sampling.

Solution: Coarse graining

Remove details from the models in order to

• make larger strides across the conformation space

• spend less effort evaluating each structure



Coarse Graining

All-Atom Representation

Easiest: Coarse Graining with one (or few) points per Nucleotide

NAST (Jonikas et al. 2009)
DMD (Ding et al. 2008)
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Ernwin Coarse Grained Representation

Helix based coarse graining with

• 6 parameters per interior loop

• 3 parameters per hairpin / exterior loop

• 1 parameter per helix



Coarse Grain Model Parameters

Interior/Multi Loops Hairpin/Exterior Loops Helices



Structure Evaluation

Structure evaluation is split into two parts:

• Local structure:
Relative orientation of adjacent helices

• Global structure:
Avoid steric clashes
Ensure compactness of structures
Long-range interactions



Local Structure

• Learn frequency distribution for helix orientations dependent
on loop size

• Used large number of Rosetta generated models with random
sequences

• Locally correct structures can be now be sampled directly!

• MCMC only needed to include long range interactions
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Non-local Energies

How to include non-local energies?

• Knowledge based potentials common approach for global
properties and long-range interactions

• Given feature X with a reference (desired) frequency
distribution P(X )

EX = −c ln
P(X )

Q(X )

with Q(X ) the background (expected) distribution.

• Used in the accept/reject step of MCMC

• Instead of a fixed Q(X ), we sample Q(X ) during the
simulation
Known as reference ratio method (Hammelryck, 2010)
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Non-local Energies

Currently, we use 4 non-local energy terms:

• Clash detection — uses 1 virtual atom for each nucleotide

• Radius of gyration — ensures compactness of structures

• Loop-loop — distance between two hairpin loops

• A-minor interaction — unpaired A interacting with the minor
groove of a helix (hairpin and interior loop version)



A-minor Interaction

The parameters d , Φ, and Ψ describe how the donor loop (blue) is
oriented with respect to the receptor stem (green).



A-minor Interaction

Probability Density of the A-Minor Energy



Expected vs. Sampled

How many interactions do we expect a loop to be involved in?



Other Energies



How Useful is An Energy?

The ernwin energy has a better profile than the Rosetta energy.



Prediction Accuracy and Comparisons



Sampling Coarse-Grain Features



Summary

• Introduced highly coarse-grained helix based structure model

• Allows more complete sampling of configuration space

• Proposed long-range energies over a coarse-grain model

• Direct sampling of local structure and knowledge based
potentials for long-range interactions

Details: Kerpedjiev et al., RNA 21, pp 1110-1121, 2015

Code at https://github.com/pkerpedjiev/ernwin

https://github.com/pkerpedjiev/ernwin


Limitations and Improvements

• Conversion from coarse grained → atomic resolution and
refinement

• Better long-range energy terms

• More sequence dependence

• Incorporation of interior loop motifs

• Incorporation of multi-loop motifs



Including 3D Motifs

Can we use 3D motif prediction to improve ernwin?

• Run JAR3D on each interior loop
returns a list motifs and PDB ids for each motif

• Choose loop conformation from one of the JAR3D instances

• Compare predictions with/out JAR3D

Unfortunately, no JAR3D predictions for multi-loops yet.



Including Motif Predictions from JAR3D

Name Length Int. Loops (found) MCC Original MCC JAR3D MCC Change RMSD Change
1GID A 158 8(5) 0.67 0.79 0.12 -10.07
1X8W A 242 10(6) 0.64 0.69 0.05 -2.94
4GMA Z 192 8(3) 0.68 0.71 0.04 -3.79
3T4B A 83 2(1) 0.89 0.91 0.02 -1.92
3D0U A 161 7(0) 0.75 0.76 0.01 -5.52
4GXY A 161 10(5) 0.70 0.71 0.01 0.33
4LVZ A 89 2(1) 0.82 0.83 0.01 -1.74
2TRA A 73 0(0) 0.90 0.91 0.01 -0.80
2HOJ A 78 3(0) 0.90 0.91 0.01 -0.05
4L81 A 96 2(2) 0.82 0.83 0.00 -1.98
1Y26 X 71 1(0) 0.98 0.97 0.00 1.00
3DHS A 215 6(3) 0.75 0.74 0.00 0.60
4P5J A 83 0(0) 0.86 0.85 0.00 0.15
3CW5 A 75 0(0) 0.91 0.90 -0.01 0.29
1U9S A 155 8(3) 0.80 0.79 -0.01 -2.01
1KXK A 70 4(2) 0.88 0.86 -0.02 0.37
4P9R A 189 3(3) 0.72 0.70 -0.02 -1.16
4PQV A 68 0(0) 0.87 0.84 -0.03 0.15
3DIR A 172 6(3) 0.81 0.76 -0.05 0.99
3GX5 A 94 4(2) 0.88 0.79 -0.09 1.38

MCCs computed by converting 3D structures into contact maps



Correctly Predicted Kink-Turn Motif

Struct Name Struct Length Interior Loops -MCC Change RMSD Change
1GID A 158 3 -0.12 -10.07



Incorrectly Predicted Interior Loop

Struct Name Struct Length Interior Loops -MCC Change RMSD Change
3GX5 A 94 2 0.09 1.38


