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Simultaneous Alignment and Folding [Sankoff]

Given: A = GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU

& B = AUUGCCGCUGACCGGCACGCCAUCGGAAUCCCGAUCGGGUCAGCGGCA

Find:
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sequence similarity + energy A + energy B → opt

where alignment, structure A, & structure B are compatible
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Sankoff’s SA&F Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker]

⊗
Sequence Alignment

O(n6)= “extreme computational cost”
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Sankoff-style Approaches

HEAVY

Dynalign
FoldAlign

• Sankoff implementations
• full (“heavy”) energy model
• (sequence-based) heuristics

LIGHT

PMcomp
• lightweight energy model
• base pair probabilities

LocARNA
+ sparsifies structure space
(ensemble-based)
• improves time and space

RAF
+ sparsifies alignment space
• sequence-based heuristics

SPARSE
• strong sparsification w/o
sequence-based heuristics
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PMcomp’s Trick – Lightweight SA&F

Sankoff: sequence similarity
+ energies of A and B

→ opt

• energy composed of loop energies

• Dynamic Programming

Base Pair Maximization [Nussinov] ⊗ Sequence Alignment

• cheaper but same complexity



S
P
A
R
S
E
·
S
.W

il
l

PMcomp’s Trick – Lightweight SA&F

Sankoff: sequence similarity
+ energies of A and B

→ opt

• energy composed of loop energies

• Dynamic Programming

Base Pair Maximization [Nussinov] ⊗ Sequence Alignment

• cheaper but same complexity



S
P
A
R
S
E
·
S
.W

il
l

PMcomp’s Trick – Lightweight SA&F

PMcomp: sequence similarity
+ pseudo-energies of A and B

→ opt

• pseudo-energy composed of “base pair energies”

• Dynamic Programming

Base Pair Maximization [Nussinov] ⊗ Sequence Alignment

• cheaper but same complexity
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PMcomp – THE Lightweight Sankoff Algorithm?

compatibilitycompatibilitycompatibility
Sankoff: same shape

PMcomp: all base pairs match
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PMcomp – THE Lightweight Sankoff Algorithm?
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PMcomp – THE Lightweight Sankoff Algorithm?

compatibilitycompatibilitycompatibility
Sankoff: same shape

PMcomp: all base pairs match
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PARSE — THE Lightweight Sankoff Algorithm
(PARSE = Prediction and Alignment of RNAs using Structure Ensembles)

• lightweight (PMcomp pseudo-energy)

& complete (Sankoff’s compatibility)

• “complete”: allows base pair indels

e.g.

We need “complete” for strong sparsification, please be patient.
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PARSE — THE Lightweight Sankoff Algorithm
(PARSE = Prediction and Alignment of RNAs using Structure Ensembles)

• lightweight (PMcomp pseudo-energy)

& complete (Sankoff’s compatibility)
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PARSE Algorithm
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PARSE Algorithm
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PARSE Algorithm
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LocARNA’s Trick:
Ensemble-based Sparsification

• Sparsify structure ensemble
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• improves time and space; each by O(n2)O(n2)O(n2)
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• improves time and space; each by O(n2)O(n2)O(n2)
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LocARNA’s Trick:
Ensemble-based Sparsification

• Sparsify structure ensemble
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SPARSE: Novel Ensemble-based Sparsification∗

>θ1

• only base pairs with probabilities > θ1

• only bases with unpaired probabilities in loops > θ2

• only base pairs with probabilities in loops > θ3

requires complete prediction (Sankoff/PARSE)

(*) confer LocARNA’s “old” sparsification:

• match only base pairs with probabilities > θ1
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SPARSE: Novel Ensemble-based Sparsification∗

>θ1 >θ2

• only base pairs with probabilities > θ1

• only bases with unpaired probabilities in loops > θ2

• only base pairs with probabilities in loops > θ3

requires complete prediction (Sankoff/PARSE)

(*) confer LocARNA’s “old” sparsification:

• match only base pairs with probabilities > θ1
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SPARSE: Novel Ensemble-based Sparsification∗

>θ1 >θ2 >θ3

• only base pairs with probabilities > θ1
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requires complete prediction (Sankoff/PARSE)

(*) confer LocARNA’s “old” sparsification:
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SPARSE: Novel Ensemble-based Sparsification∗

>θ1 >θ2 >θ3

• only base pairs with probabilities > θ1

• only bases with unpaired probabilities in loops > θ2

• only base pairs with probabilities in loops > θ3

requires complete prediction (Sankoff/PARSE)
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w/ complete: a3 in loop a2 3
w/o complete: a3 in loop a1 7

a2 7 =⇒ a3-b2 7
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Thresholds in Recursions Cases
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Thresholds in Recursions Cases
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Modify Evaluation to Save Time
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Quadratic Time

a

b
k

i

Q: How many matrices Mab compute (i , k)?

Count base pairs a where

PrA[i in loop of a] > θ2
i

⇒ less than 1/θ2

A: each (i , k) in only constant number of matrices �
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Quadratic Time
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Q: How many matrices Mab compute (i , k)?

Count base pairs a where

PrA[i in loop of a] > θ2
i

⇒ less than 1/θ2

A: each (i , k) in only constant number of matrices �
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(S)PARSE improves prediction over LocARNA

LocARNA: -.......(((.............((.......)).....
A -CAACUCUGGAGAGUGUUUACGAAGGUAAACCACCCACGA
B UCGACCCUCGCGGGAGACAUCGGGAUU----CGAUCCCGA

........(((.............((.----..)).....
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Run times and speedup
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RAF
(0.36s)
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Alignment Accuracy (Bb 2.1, k2)
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Structure Prediction Accuracy (BB 2.1, k2)

Sequence Identity

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

21 − 40 41 − 60 61 − 80 81 − 100

SPARSE
LocARNA



S
P
A
R
S
E
·
S
.W

il
l

Conclusions

SPARSE: very efficient RNA alignment
without sequence-based heuristics

• PARSE is THETHETHE lightweight Sankoff variant (cf. PMcomp)

• predicts deleted/inserted base pairs; like original SA&F

• SPARSE = Sparsified PARSE

• Novel ensemble-based sparsification (in-loop probabilities)

• No sequence-based heuristics

• Speeds up SA&F: Quadratic Time [← O(n6)]

http://www.bioinf.uni-freiburg.de/Software/SPARSE/

http://www.bioinf.uni-freiburg.de/Software/SPARSE/
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• Novel ensemble-based sparsification (in-loop probabilities)

• No sequence-based heuristics

• Speeds up SA&F: Quadratic Time [← O(n6)]

http://www.bioinf.uni-freiburg.de/Software/SPARSE/

http://www.bioinf.uni-freiburg.de/Software/SPARSE/
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Computing “In Loop” Probabilities

from McCaskill matrices: Qb, Qm

Pr[(i’,j’) base pair in loop of (i,j)]
=(I + M)/Q

i ji' j'

=I =M
Qb

i j

...

Qm

i' j'
Qb

i j

...

Qm

i' j'
Qb

...

Qm

i j
Q

i' j'
Qb

...

m
+ +

similar: Pr[k unpaired in loop of (i,j)]

[ExpARNA-P; Schmiedl et al., BMC Bioinformatics 2014]
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(Bralibase 2.1, 3-way alignments)
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SPARSE Improves Over LocARNA
for Specific Families
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(shown: IRES HCV, pairwise)


