SPARSE: Quadratic Time SA\&F of RNAs without Sequence-Based Heuristics

Sebastian Will
University of Leipzig

圊 S. Will, Ch. SchmiedI, M. Miladi, M. Möhl, R. Backofen. Bioinformatics, 2015.

Simultaneous Alignment and Folding [Sankoff]

Given: $\begin{aligned} & A=\text { GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU } \\ & \& \quad B\end{aligned}$

Find:

sequence similarity + energy $A+$ energy $B \rightarrow$ opt
where alignment, structure $A, \&$ structure B are Compatible

Simultaneous Alignment and Folding [Sankoff]

Given: $\quad \begin{aligned} \mathrm{A} & =\text { GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU } \\ & \& \quad B\end{aligned}$

sequence similarity + energy $A+$ energy $B \rightarrow$ opt
where alignment, structure $A, \&$ structure B are COMpatible

Sankoff's SA\&F Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker]

\otimes
Sequence Alignment
$O\left(n^{6}\right)=$ "extreme computational cost"

Sankoff-style Approaches
 HEAVY

Dynalign FoldAlign

- Sankoff implementations - full ("heavy") energy model
- (sequence-based) heuristics

PMcomp

- lightweight energy model
- base pair probabilities

LocARNA

+ sparsifies structure space (ensemble-based)
- improves time and space

RAF

+ sparsifies alignment space
- sequence-based heuristics
 sequence-based heuristics

Sankoff-style Approaches HEAVY LIGHT

Dynalign FoldAlign

- Sankoff implementations - full ("heavy") energy model
- (sequence-based) heuristics

PMcomp

- lightweight energy model
- base pair probabilities

LocARNA

+ sparsifies structure space (ensemble-based)
- improves time and space

RAF

+ sparsifies alignment space
- sequence-based heuristics

SPARSE Nem

- strong sparsification w/o sequence-based heuristics

PMcomp's Trick - Lightweight SA\&F

Sankoff: sequence similarity + energies of A and $B \quad \rightarrow$ opt

- energy composed of loop energies
- Dynamic Programming

PMcomp's Trick - Lightweight SA\&F

Sankoff: sequence similarity + energies of A and $B \rightarrow$ opt

- energy composed of loop energies
- Dynamic Programming

PMcomp's Trick - Lightweight SA\&F

PMcomp: sequence similarity + pseudo-energies of A and $B \quad$ opt

- pseudo-energy composed of "base pair energies"
- Dynamic Programming

Base Pair Maximization [Nussinov] \& Sequence Alignment

- cheaper but same complexity

PMcomp's Trick - Lightweight SA\&F

PMcomp: sequence similarity + pseudo-energies of A and $B \quad$ opt

- pseudo-energy composed of "base pair energies"
- Dynamic Programming

Base Pair Maximization [Nussinov] \otimes Sequence Alignment

PMcomp's Trick - Lightweight SA\&F

PMcomp: sequence similarity + pseudo-energies of A and $B \quad$ opt

- pseudo-energy composed of "base pair energies"
- Dynamic Programming

Base Pair Maximization [Nussinov] \otimes Sequence Alignment

- cheaper but same complexity

PMcomp - THE Lightweight Sankoff Algorithm?

compatibility
Sankoff: same shape
PMcomp: all base pairs match

PMcomp - THE Lightweight Sankoff Algorithm?

compatibility
Sankoff: same shape
PMcomp: all base pairs match

PMcomp - THE Lightweight Sankoff Algorithm?

compatibility

Sankoff: same shape
PMcomp: all base pairs match

PARSE - THE Lightweight Sankoff Algorithm

- lightweight (PMcomp pseudo-energy)

$$
\& \quad \text { complete (Sankoff's compatibility) }
$$

- "complete": allows base pair indels

We need "complete" for strong sparsification, please be patient.

PARSE - THE Lightweight Sankoff Algorithm

- lightweight (PMcomp pseudo-energy)
\&
complete (Sankoff's compatibility)
- "complete": allows base pair indels

We need "complete" for strong sparsification, please be patient.

PARSE Algorithm

PARSE Algorithm

PARSE Algorithm

LocARNA's Trick:
 Ensemble-based Sparsification

- Sparsify structure ensemble

- improves time and space; each by $O\left(n^{2}\right)$

LocARNA's Trick:
 Ensemble-based Sparsification

- Sparsify structure ensemble

all base pairs

LocARNA's Trick: Ensemble-based Sparsification

- Sparsify structure ensemble

only probable base pairs
- improves time and space; each by $O\left(n^{2}\right)$

SPARSE: Novel Ensemble-based Sparsification*

- only base pairs with probabilities $>\theta_{1}$
- only bases with unpaired probabilities in loops $>\theta_{2}$ - only base pairs with probabilities in loops $>\theta_{3}$ requires complete prediction (Sankoff/PARSE)
(*) confer LocARNA's "old" sparsification:
- match only base pairs with probabilities $>\theta_{1}$

SPARSE: Novel Ensemble-based Sparsification*

- only base pairs with probabilities $>\theta_{1}$
- only bases with unpaired probabilities in loops $>\theta_{2}$
- only base pairs with probabilities in loops $>\theta_{3}$
requires complete prediction (Sankoff/PARSE)
(*) confer LocARNA's "old" sparsification:
- match only base pairs with probabilities $>\theta_{1}$

SPARSE: Novel Ensemble-based Sparsification*

- only base pairs with probabilities $>\theta_{1}$
- only bases with unpaired probabilities in loops $>\theta_{2}$
- only base pairs with probabilities in loops $>\theta_{3}$
requires complete prediction (Sankoff/PARSE)
(*) confer LocARNA's "old" sparsification:
- match only base pairs with probabilities $>\theta_{1}$

SPARSE: Novel Ensemble-based Sparsification*

- only base pairs with probabilities $>\theta_{1}$
- only bases with unpaired probabilities in loops $>\theta_{2}$
- only base pairs with probabilities in loops $>\theta_{3}$
requires complete prediction (Sankoff/PARSE)

$w /$ complete: a_{3} in loop a_{2} w / o complete: a_{3} in loop $a_{1} X$

$$
a_{2} \boldsymbol{X} \Longrightarrow a_{3}-b_{2} \boldsymbol{X}
$$

Thresholds in Recursions Cases

Thresholds in Recursions Cases

all base pairs θ_{1}

Modify Evaluation to Save Time

Quadratic Time

Q: How many matrices $M^{a b}$ compute (i, k) ?

Quadratic Time

Q: How many matrices $M^{a b}$ compute (i, k) ?
Count base pairs a where $\operatorname{Pr}^{A}[i$ in loop of $a]>\theta_{2}$

Quadratic Time

Q: How many matrices $M^{a b}$ compute (i, k) ?
Count base pairs a where $\operatorname{Pr}^{A}[i$ in loop of $a]>\theta_{2}$

A: each (i, k) in only constant number of matrices

(S)PARSE improves prediction over LocARNA

LocARNA:

\qquad
A -CAACUCUGGAGAGUGUUUACGAAGGUAAACCACCCACGA
B UCGACCCUCGCGGGAGACAUCGGGAUU----CGAUCCCGA
\qquad
. (($\ldots((((\ldots(((\ldots))) \ldots)))) .))$.
A AGCAAAUAUUUGUUCUUUUUUGAAGAAUGAAUAUGCAACU
B GGCCGA-AGGCGCAACCGCCCCGGAAACGCUCAGGCAA--$.(((\ldots-.((((\ldots(((\ldots))) \ldots)))) \ldots))) \ldots-$

))). .

A UUCUGGUAUAAGGACAGAGAUUUCUUC
B ---------AAGGACCG----CGCGGG
---------.---- .))) . .

SPARSE:
 A ----CAA-CUCUGGAGAGUGUUUACGAAG-GUAAACCACC B UCGACCCUCGCGGGAGACAUCGGGAUUCGAUCCCGAGGCC

$\ldots((((\ldots(((()(((()((\ldots))))))))))))$. A CACGAAGCAAAUAUUUGUUCUUUUUUGAAGAAUGAAUAUG
B GAAGGCGCAACCG \qquad CCC \qquad CGGA
... (((. . . ((\qquad - \qquad))) .

> ...()) (..))
\qquad))
A CAACUUUCUGGUAUAAGGACAGAGAUUUCUUC
B -AACGCUCAGGCAAAAGGACCGCGCGGG----
(..))))..)))))) .))

Run times and speedup

Bralibase 2.1, pairwise alignments (k2)

Alignment Accuracy (Bb 2.1, k2)

Structure Prediction Accuracy (BB 2.1, k2)

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

http://www.bioinf.uni-freiburg.de/Software/SPARSE/

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff variant (cf. PMcomp)
- predicts deleted/inserted base pairs; like original SA\&F
- SPARSE $=$ Sparsified PARSE
- Novel ensemble-based sparsification (in-loop probabilities)
- No sequence-based heuristics
- Speeds up SA\&F: Quadratic Time $\left[\leftarrow O\left(n^{6}\right)\right]$
http://www.bioinf.uni-freiburg.de/Software/SPARSE/

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff variant (cf. PMcomp)
- predicts deleted/inserted base pairs; like original SA\&F
- SPARSE $=$ Sparsified PARSE
- Novel ensemble-based sparsification (in-loop probabilities)
- No sequence-based heuristics
- Speeds up SA\&F: Quadratic Time $\left[\leftarrow O\left(n^{6}\right)\right.$]
http://www.bioinf.uni-freiburg.de/Software/SPARSE/

Thanks

...for your attention
... to my coauthors

- Christina Schmiedl
- Milad Miladi
- Mathias Möhl
- Rolf Backofen
... and the German Research Foundation $\boldsymbol{D} \boldsymbol{F}$

Appendix

Computing "In Loop" Probabilities

from McCaskill matrices: Q_{b}, Q_{m}

similar: $\operatorname{Pr}[k$ unpaired in loop of $(\mathbf{i}, \mathbf{j})]$
[ExpARNA-P; Schmiedl et al., BMC Bioinformatics 2014]

Alignment and Prediction Accuracy (Bralibase 2.1, 3-way alignments)

SPARSE Improves Over LocARNA for Specific Families

(shown: IRES HCV, pairwise)

