Fast Local RNA Alignment

Andrey Mironov (Moscow State University)

Benasque 2015

Motivation

• Simultaneous alignment and structure prediction is very slow (Sankoff algorithm and its modifications)

• Most algorithms (especially for multiple alignment) produces global alignments: we need exact boundaries of the sequences

Idea1. Not to work with structure

- The bracket-dot presentation of the structure is a *<u>String</u>*
- Analise the structure before the alignment
- Use the result of structure analysis in the alignment scoring Use the probabilities of pairing (pFold)

If $\{p^L, p^R\}$ are similar the structures seems to be similar

The p^L and p^R can not be used directly

• The distributions of the p^L and p^R depend on sequence length and positions

Rescaling of p^L , p^R

- We want to do a transformation of *p^L*, *p^R* to get a values with standard distributions that do not depend on the position and length.
- The *cdf* is uniformly distributed!
- The *cdf* can be fitted by:

$$cdf(x) = \alpha x^{bl} + (1 - \alpha)(1 - (1 - x)^{b2})$$

 $\alpha = \alpha (pos); b2 = b2(pos); b1 = b1(pos, l)$

Scoring

$$W_{ij} = \alpha \cdot S_{ij}^{seq} + (1 - \alpha) \cdot S_{ij}^{str}$$
$$S_{ij}^{str} = SL_{ij} + SR_{ij} + SU_{ij}$$

• S_{ij} are calculated as log-likelihood:

$$S_{ij}^{seq} = \log\left(\frac{p(s_i, s'_j)}{p(s_i)p(s'_j)}\right)$$
$$SL_{ij} = \log\left(\frac{p(s_i^L, s'_j^L)}{p(s_i^L)p(s^{L'}_j)}\right)$$
$$etc...$$

Idea 2. Non-progressive multiple alignment

- Do BLAST-like alignments between all sequences and find HSP
- Convert structure information to 4-letter alphabet
- Do BLAST-like alignments between all sequence structure signatures

High Scoring Segments (HSP)

Definition1

 $HSP(A, B) = \{ fA, tA; fB, tB \}$ diag(HSP) = fA - fB

B

<u>Definition2.</u> *Two HSPs h(AB),h2(BC) for sequence pairs A~B and B~C are <u>compatible</u> if there exist HSP h(CA) for pair C~A that:*

Search for sets of compatible HSPs (consensus set)

- Select a pair of the sequences (A,B)
- Select next HSP h1(A,B)
 - Select next HSP h2(AC) that is compatible with h1
 - Select next HSP h3(AD) that is compatible with h1 and h2

This is a clique problem (NP-hard), BUT...

Theoretically the expected number of iterations on a random sequences tends to a constant when number of sequences tends to infinity

Algorithm: search for blocks

- Calculate p^L , p^R
- Transform structure information to structure alphabet
- Do BLAST-like search using sequences and structure
- Select combinations of HSPs that are compatible for all pairs of the sequences
- Search for consensus HS blocks (HSB)

Algorithm: alignment

- Decompose HSBs to a set of columns
- Column Graph (CG):
 - Vertices = columns
 - Edge $e=(u \rightarrow v)$ if for all sequences position i $v_i > u_i; v_i, u_i$ position on sequence #i
- Do Dynamic Programming on CG and find the optimal alignment

If you have enough time

 Calculate covariance between columns

 Reconstruct optimal common structure and produce the alignment simultaneously (to be done)

Preliminary results

Without covariance

- tRNA with random flanks
- Identity 30-60%
- Quality (number of correctly aligned positions) = 80%
- Time for 20 sequences 2 s.

Variants

Variant 1

- Find HSS
- Near found diagonals do ProbCons-like alignment

Variant 2

- Do Nussinoff-style algorithm on columns
 Variant 3
- Do hash-based partition function calculation

Team

- Svetlana Vinoradova (MSU)
- Michkael Roytberg (IMPB RAS, Puschino)
- Andrey Mironov

Funding: Russian science foundation