Detection of thermodynamically stable RNAs in long sequences

Ruslan Soldatov Moscow State University

Thermodynamic stability of an RNA sequence

Thermodynamic stability of an RNA sequence

- length
- dinucleotide content

$Z = (E - \mu) / \sigma$

Thermodynamic stability of functional non-coding RNAs

ncRNA Type	No. of Seqs.	Mean z-score
tRNA	579	-1.84
5S rRNA	606	-1.62
Hammerhead ribozyme III	251	-3.08
Group II catalytic intron	116	-3.88
SRP RNA	73	-3.37
U5 spliceosomal RNA	199	-2.73

Detection of segments with low Z-score in sliding window

- RNAs have different complexities of a structure and sizes
- Detection is sensitive to the length of scanning window
- Combination of multiple windows is time-consuming and requires substantial post-processing

Detection of segments with low Z-score locally-optimal

Property of MFE matrix

- Calculate MFEs for each subsequence
- Use RNASlider with speed up techniques (sliding MFE recalculation, sparsification)

From MFE matrix to Z-score matrix

Dependence on sequence length

From MFE matrix to Z-score matrix

$$Z_{ij} = \frac{(E_{ij} - \mu_{ij})}{\sigma_{ij}}$$

• Dependence on sequence length

• Dependence on dinucleotide content

From MFE matrix to Z-score matrix

- Estimation of regression parameters
 - 27 quadratic regressions were fitted for each selected length
 - 20'000 learning parameters were used to estimate parameters of each quadratic regression

• High quality of approximation

10

RNASurface

segment

length

11

Benchmark using Bacillus subtilis

ROC curve

Sensitivity versus PPV

Applications

- Preprocessing in detection of functional structured RNAs
- Large-scale correlations with other genomic tracks (e.g. cds boundaries, ribosome profiling, RNA-seq etc)

RNASurface + Probing data

- Probing data increases quality of the RNA secondary structure prediction
- Whether and how probing data contributes to the **detection** of structured RNAs?

Outline of the approach

From reactivity to likelihood

Reactivity distribution of paired/unpaired bases is inferred from high-confidence nucleotides according to partition function

Energy model

L_i is the probing log-likelihood of being paired for position i in the RNA sequence

How to estimate background of probing-directed MFE?

mRNAs as a set of sequences with low fraction of functional secondary structures

$$Z = (E' - \mu) / \sigma \iff$$

Effect of probing data

E' > E destabilizing

E' < E

- $E' \approx E$ background
 - stabilizing

Probing-directed Z-score of mRNAs and ncRNAs

Transcriptome-wide screen with PARS data

Wan Y et al. Nature. 2014

Two runs:

- 3587 elements in probing-constrained RNASurface run
- 3201 elements in RNASurface run

Z-score < -3

Results with/without probing data are compared with Evofold prediction

predictions, ranked by Z-score

Consistency of probing data with evolutionary conserved RNA secondary structures

Conclusions

- Program RNASurface using a set of regressions efficiently detects locally-optimal segments with low Z-score in long sequences
- Integration of RNA probing data with RNASurface allows increased prediction quality
- Web-server <u>http://bioinf.fbb.msu.ru/RNASurface/</u>

One-dimensional tracks

$$MZ(i) = \max_{i-l=r-i, r-l+1 \le L} Z_{kl}^2 I\{Z_{kl} \le 0\}$$

$$\rho_w(i) = \frac{1}{w} \sum_{k,l} Z_{kl}^2 \cdot I\{S_{kl} \in \text{locally optimal output}\} \cdot I\{i - w \leq \frac{k+1}{2} \leq i + w\},\$$

Time requirement

Calculations were performed on Intel Xeon Processor E5506

Distribution of structured predictions along different types of regions in *Bacillus subtilis*

Table 2.	Relative	abundance	of structured	regions	in various	functional	parts	of the	Bacillus	subtilis	genome
----------	----------	-----------	---------------	---------	------------	------------	-------	--------	-----------------	----------	--------

Z-score	-2	-3	-4	-5
coding regions	0.91 (148441/162599)	0.68 (21050/30963)	0.37 (2010/5399)	0.15 (153/1017)
upstream regions	0.98 (6442/6601)	1.41 (1809/1280)	2.09 (480/230)	3.05 (131/43)
downstream regions	2.55 (6166/2420)	5.68 (2793/492)	10.11 (950/94)	12.5 (225/18)
intercoding regions	1.34 (16448/12249)	2.41 (5753/2387)	4.41 (1901/431)	12.52 (551/44)
intercoding regions in operons	1.71 (274/160)	3.18 (105/33)	5.86 (41/7)	13 (13/1)

First and second numbers in parentheses are observed and expected number of predictions in selected region. Abundance is the ratio of these numbers.

Detection of different ncRNA classes in *Bacillus subtilis*

Table 1. Percent (number) of predictions for different types of RNA for three Z-score thresholds

Z-score	Riboswitch	T-box	L-leader	sRNA	tRNA	5S rRNA	FPR, %	PPV, %
-1	79 (34)	92 (12)	67 (4)	75 (15)	95 (81)	100 (20)	18	0.05
-2	65 (28)	85 (11)	50 (3)	65 (13)	62 (53)	35 (7)	5	0.1
-3	44 (19)	69 (9)	33 (2)	35 (7)	16 (14)	15 (3)	1	0.25

FPR - false positive rate, PPV - positive predictive value;

Prediction features

• Impact of the structure complexity on RNASurface and RNALfoldz performance

From reactivity to likelihood

Distribution across mRNAs

