

PF13_0315

RNA-binding protein sequence specificity: experiments and

models

KHDRBS1

Computer Science UNIVERSITY OF TORONTO

Molecular Genetics

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

CG11360

INRNPK CC

Dr. Xiao Li now postdoc at Stanford

co-supervised w/ Howard Lipshitz Dr. Hilal Kazan now faculty at Antalya International University, Turkey

Post-transcriptional regulation is *ubiquitous* and *substantive*

UTRs of human mRNAs are compact and information-rich

Predictive models of PTR

Predictive models of PTR

Cellular context (e.g. RBP and miRNA activities)

1. Determining specificities of all

eukaryotic RBPs

2. Developing models/methods to scan for RBP binding sites in mRNAs

Three types of RBPs

<u>Sequence-specific</u>

Shape-specific

Pun Puf3 Pum1

1) bir Focus

 RBPs with many targets; RBPs with a small number of targets are probably different.

fly) iuman)

A stem

 Binding assays —> preferences; rather than from a handful of targets to preferences.

25%

Estimate of prevalence: 70%

5%

Three types of RBPs

Sequence-specific

1) binds ssRNA

2) binds ssRNA in a *structural context* (e.g. **hairpin loop**)

Pumilio (fly) Puf3p (yeast) Pum1/2 (human)

Estimate of prevalence: 70%

Smaug (fly) Vts1 (yeast) SAM4DA/B (human)

Shape-specific

3) binds dsRNA stem

Staufen (fly) Staufen1/2 (human)

25%

In vitro RBP binding assays pre-2009 SELEX

~70 RBPs

(Cook et al, Brief Funct Genomics 2015)

In vitro RBP binding assays

(HT-)SELEX

RNAcompete RNA Bind-n-seq 2009, 2013

~70 RBPs

~220 RBPs (~100 unpublished)

3 RBPs (6 unpublished)

2014

(Cook et al, Brief Funct Genomics 2015)

In vitro RBP binding assays

~70 RBPs

~220 RBPs (~100 unpublished) 3 RBPs (6 unpublished)

(Cook et al, Brief Funct Genomics 2015)

In vivo RBP binding assays

RIP

CLIP

PAR-CLIP

In vivo RBP binding assays

RIP

CLIP

PAR-CLIP

Need to consider binding site turnover

CEBPA ChIP-seq of animal livers

Similar turnover likely occurs for RBPs

Implications for RBP binding preferences

1. RBP binding sites need to be "evolutionarily easy" to generate, so either:

a) They have variable affinity, clustered sites
- Sequence-specific ssRBP
b) They are easy to concrate via 'conv-and-

b) They are easy to generate via 'copy-andpaste' mechanisms,

- dsRNA binding proteins

Excludes very complex structures for RBPs with many targets?

Possible exceptions

Canonical ssRNA-binding domains

Other domains: CCCH Zinc finger, Pumilio/Puf, Cold Shock Domains, others (sometime C2H2) Auxiliary domains: CCHC Zinc fingers

Canonical dsRNA-binding domain

double-standed RNA binding domain binds dsRNA 10-12bp ~20 in RBPs in mammals

Adapted from: Micklem, D. R. et al. The EMBO journal, 19(6), 1366-1377.

Modelling RBP binding preferences

- 1. What RNA structures are available for RBP to bind? mRNA secondary structure prediction
- 2. What RNA structure / sequences does the RBP want to bind? sequence/structure motif (SSM) finding
- 3. How does RBP binding affects the available RNA structures?
 Ralf Bundschuh

Defining positives and negatives for RBP binding

Site accessibility predicts in vivo Puf3p binding

Site accessibility predicts general RBP binding

Strict is better than permissive accessibility

in silico versus *in vitro* estimates of site accessibility

Red text indicates sig. differences (P < 0.05 DDCP)

PARS data from (Kestesz et al, Nature 2010)

Representing structural context

Legend P - paired H - hairpin loop I - internal / bulge loop M - multiloop U - external (unstructured)

Representing structural context

5'-AGACGCGCGCGUUCGCCG	CGCU	CGGCGCAUGC -3'
UPPIPPPPPHHHHPPIP	PPPP	Р <mark>U</mark> РРННННРР
UUUPPIPPPPHHHHHPP	PPPI	PPUUUUUUUU
UUUUPPPPIPPIIIPPHH	HPPI	PPPPPPUUUU
UPPPPHHHHPPPPIPPP	нннн	PPPPUUUUUU
UUUUUUUPPPPIPPPP	нннн	PPPPPIPPP

Proposed binding site

State	Probability
Р	45%
Н	45%
I	10%
Μ	08
U	08

Legend P - paired H - hairpin loop I - internal / bulge loop M - multiloop U - external (unstructured)

Single nucleotide context

Structural context of a binding site

5'-AGACGCGCGCGUUCG	CCGCGCU	JCGGCGCAUGC	<u>'</u> -3'				
UPPIPPPPPHHHHP	PIPPPI	P <mark>U</mark> PPHHHHPP)				
UUUPPIPPPPHHHH	IHPPPPP]	PPUUUUUUUU	ſ				
UUUUPPPPIPPIIIP	PHHHPPJ	PPPPPPUUUU	ſ				
UPPPPHHHHPPPPIP	PPPPHHHF	PPPPUUUUUU	J				
UUUUUUUPPPPIPP	PPPPHHHF	PPPPPIPPP)				
Proposed binding site							

Legend P - paired H - hairpin loop I - internal / bulge loop M - multiloop U - external (unstructured)

State	Probability
PPPP	20%
нннн	40%
IIII	0%
MMMM	08
UUUU	08
paired	40%

Full site context

Structure context predicts RBP binding better than site accessibility

RIP-chip data from Gerber et al 2004, Hogan et al 2008 + others

Summary

1. RNA secondary structure predictions helps identify *in vivo* RBP binding (>70% of RBPs),

2. *In silico* predictions better recover *in vivo* binding than circa 2010 *in vitro* experimental predictions,

3. Estimates of site 'structural context' often provide more information than site accessibility,

Models of structure binding preferences.

adapted from Hackermuller et al (2005) Gene 345:3.

*Hiller et al (2006) Nuc. Acids Res. 34:e117.

Motif models for structure preference

Model of RNA sequence preferences

See: RNAcontext & Malarkey

Single nucleotide structural context

Proposed binding site

Kazan et al, PLoS Comput Biol. 2010 Jul 1 (RNAcontext)

RBP RBD		Sequence	Structural preference	AU-ROC
		preference	type <u>0 0.5</u>	full seq only
Khd1	KH		lli 98	0.81* 0.74
Vts1	SAM		ll 66	0.71* 0.63
Hairpin L	loop	Bulge / Internal Loop Mu	altiloop Extern	nal Loop Paired / Dummy

RBP	RBD	Sequence	Stru pref	Structural preference		AU-ROC		
		preference	type 0	0.5	1	full	seq only	

RBP	RBD	Sequence	Stru pref	Structural preference		AU-ROC		
		preference	type 0	0.5	1	full	seq only	

Evidence for functional binding of Pumilio to paired target sites

from Kedde et al, Nature Cell Biology 12, 1014–1020 (2010)

Human vs Drosophila Staufen domain structures

req. for homodimerization

Adapted from: Micklem, D. R. et al. The EMBO journal, 19(6), 1366-1377.

Staufen (dsRBD3) binds optimally to 12bp uninterrupted stem in vitro

North-western blot showing binding of wild-type dsRBD3 to RNA stem–loops

Human Staufen binds a 19bp dsRNA in human

human ARF1 Staufen binding site (SBS) 3'UTR nt 1-300

The SBSs within c-JUN, SERPINE1, IL7R and GAP43 mRNAs do not contain an uninterrupted stem that is more than 12 bp

Fly Staufen binds bicoid 3'UTR in three locations

Drosophila Staufen targets in embryos were identified using two RIP-Chip experiments

John Laver

Kristin Ancevicius

What does Staufen bind?

Paired region _ motifs	→ Stems -	→ Refined stems
15 of 19; 10 of 12	[19,15]; [12,10]	[19,15,0] [19,15,4]
e . g . 15 of 19		[12,10,2]
Ť.		ismatches
	[19,15]	unpaired bases
—	⇒	[19, 15, 4]
	_m≎m_m¢m T	

Stems enriched in Drosophila Staufen targets

[19,15]

Structure motif description:

Stem spanning 19 bps with at least 15 Watson-Crick paired bases [12,10]

Stem spanning 12 bps with at least 10 Watson-Crick paired bases

Representative structures:

mismatches

unpaired bases

Distinguishing features of Staufen-bound stems

pos: Staufen-bound 3'UTRs **neg:** Co-expressed 3'UTRs, not Staufen-bound

Staufen-recognized structures (SRSs)

- 1) no G-G mismatches in positive set!
- 2) Negative set structures have high entropy
- 3) Positive set structures are highly conserved

Non-canonical basepairing helps find Staufen sites

Staufen-recognized structures (SRSs)

John D. Laver¹, Xiao Li¹, Kristin Ancevicius^{2,3}, J. Timothy Westwood^{2,3,*}, Craig A. Smibert^{1,4,*}, Quaid D. Morris^{1,5,*} and Howard D. Lipshitz^{1,*}

Nucleic Acids Res. 2013 Nov 1;41(20):9438-60. doi: 10.1093/nar/gkt702. Epub 2013 Aug 13.

ADAR2 has two dsRNA that bind a 16-bp stem

Re-analysis of Human Stau1 data

Staufen1 senses overall transcript secondary structure to regulate translation

```
Emiliano P Ricci<sup>1-3</sup>, Alper Kucukural<sup>1-3</sup>, Can Cenik<sup>1-4</sup>, Blandine C Mercier<sup>1-3</sup>, Guramrit Singh<sup>1-3</sup>, Erin E Heyer<sup>1-3</sup>, Ami Ashar-Patel<sup>1-3</sup>, Lingtao Peng<sup>1-3</sup> & Melissa J Moore<sup>1-3</sup>
```

Question #1: Are our Drosophila SRSs predictive of Human Stau1 binding? - Yes!

Question #2: Does the same analysis applied to Stau1 data produce similar structures? - See next slide

Question #3: Does Human Stau1 detect "overall transcript secondary structure" or the presence (and abundance) of specific secondary structures?

- "Overall transcript secondary structure" and GC content are no longer predictive of Stau1 binding once you account for the abundance of two specific secondary structures.

Re-analysis of Human Stau1 data

p < 10⁻⁵

Summary

1: Like Drosophila Staufen, human Stau1 has at least two binding modes

2: Human Stau1 and Drosophila Staufen recognize a similar "best structure", [19,16,0] vs [19,15,0], but may differ on the "minimum structure", [15,13] vs [12,10].

3: Differences may arise from lack of dsRBD1 in human Stau1 and lack of SSM in Drosophila Stau

4: No evidence that human Stau1 recognizes 'overall transcript structure' except when it generates one of the two structural motifs that we found.

Computationally-derived motif for SLBP

SSMfinder

- B. Fold sequences and annotate structural context***
- C. Find enriched k-mers (seq and struct)
- D. Cluster k-mers
- E. Order and overlap clusters (next slide)

Ordering and overlapping SLBP clusters

RNAcompete-S derived SLBP motif is present predominantly at histone 3' ends

RNAcompete-S derived SLBP motif is present predominantly at histone 3' ends

Eukaryote-wide mapping of RBP sequence binding preferences

Core RNAcompete Team

Pls

Prof. Tim Hughes @ Donnelly

me

Molecular biology

Dr. Deb Ray

Computational biology

Prof. Hilal Kazan

Kate Cook

Prof. Matt Weirauch

Dr. Hamed Najafabadi

(Ray*, Kazan* et al, Nat Biotech 2009; Ray*, Kazan*, Cook*, Weirauch*, Najafabadi* et al, Nature 2013)

RNAcompete-based measurement of RBP RNA binding

In vitro sequence preferences of >200 RBPs

209 sequencespecific RBPs profiled

85 RBPs 31%* of genome

61 RBPs 36%* of genome

73 RBPs <1% of eukaryote genomes

Analysis of RBP secondary structure preferences

- RNA oligos in RNAcompete were designed to have no or weak secondary structure
- Nonetheless, we were able to detect a significant preference for ssRNA for 55 of the RBPs (no RBPs preferred dsRNA)
- 7 showed a preference **for** binding loops
- 15 showed a bias against binding loops

Similar protein sequence implies similar motifs

(Ray*, Kazan*, Cook*, Najafabadi*, Weirauch* et al, Nature 2013, in press)

Inferring RBP motifs by protein sequence identity

CISBP-RNA Database: Catalog of Inferred RNA Binding Proteins

+

C Reader

🙆 🕒 🕂 🖂 🖶 🖉 cisbp-rna.ccbr.utoronto.ca

 $\bigcirc \bigcirc \bigcirc$

↔ 🕅 🏢

CISBP-RNA Databas	e: Catalog of Inferred RNA Binding Proteins
Home	
Tools	
Download cart	CISBP-RINA
Bulk downloads	
Database stats	Welcome to CIS-BP-RNA, the online library of RNA binding proteins and their motifs.
Contact us	
Help	Search for a RBP
How to cite	By Identifier
	Browse RBPs / Restrict Search for RBPs
	By Model Organism +
	By Any Species
	By Domain Type +
	By Motif Evidence \Rightarrow
	By Evidence Type ÷
	By Study ÷
	Database Build Version 0.5 +
	Latest build: 0.5
	GO!
	Last updated: 18-11-2012 Database Build (
Current databas	e contents: 7753 RBP binding motifs(238 from direct experiments), out of a total of 62587 Eukaryotic RBPs from 55 families in 289 species

CISBP-RNA Database: Catalog of Inferred RNA Binding Proteins			K
Image: A state of the state	Ç	Reader	0
			+

CISBP-RNA Database: Catalog of Inferred RNA Binding Proteins							
Hon We are of Too Specific Download cart Bulk downloads Database stats	continuing with this projectplease contact me (or Quaid) if you have a protein or species of interest! a1cf (Danio rerio) RRM						
Contact us Help How to cite	RBP Information						
now to cite	Pfam ID	Interpro ID	Gene ID	CISBP-RNA ID	Sequence sourc	e	
	PF00076 (RRM 1)	IPR000504	ENSDARG0000002968	T36035_0.5	Ensembl (2011-Oct	t- <u>26)</u>	
	Directly determined binding motifs						
	Name/Motif ID	Species	Sequence Logo	IUPAC	Type/Study/Study ID	RBD Identity	
	No direct experiments						
	Motifs from related RBPs						
	Name/Motif ID Species Sequence Logo IUPAC Type/Study/Study ID RBD Identity						
	A1CF M001_0.5	Homo sapiens		WUAAUUR	RNAcompete <u>Ray et al.(2012)</u> RNCMPT00001	0.848	
		For this family	v, RBPs with RBD identity > 0.7	will likely have a sim	ilar motif		

Summary

- We have RNA sequence motifs for 209 RBPs
- Can infer motifs for 1,000s more RBPs by homology, including 57% of human RBP complement and 30% of metazoan RBPs
- Motif scans allow the prediction of RBP function based on location of conserved motif hits and simple correlation analysis.

A bunch of different motifs from different species (selected from >100)

RRM	AT3G55460	Plantae	Arabidopsis_thaliana
RRM	PK27672.1	Plantae	Cannabis_sativa
RRM	PK26404.1	Plantae	Cannabis_sativa
RRM	PK13173.1	Plantae	Cannabis_sativa
RRM	PK15111.1	Plantae	Cannabis_sativa
RRM	PK23225.1	Plantae	Cannabis_sativa
RRM	PK23842.1	Plantae	Cannabis_sativa
RRM	PFI1175c	Protista	Plasmodium_falciparum
RRM	Smp_036270	Protista	Schistosoma_mansoni
RRM	Smp_032060	Protista	Schistosoma_mansoni
RRM x 2	DDB_G0286331	Amoebozoa	Dictyostelium_discoideum
RRM x 2	DDB_G0288391	Amoebozoa	Dictyostelium_discoideum
RRM x 2	CBG14639	Animalia	Caenorhabditis_briggsae
RRM x 2	CBG13971	Animalia	Caenorhabditis_briggsae
RRM x 2	CBG14639	Animalia	Caenorhabditis_briggsae
RRM x 2	CBG04067	Animalia	Caenorhabditis_briggsae
RRM x 2	CBG05471	Animalia	Caenorhabditis_briggsae
RRM x 2	CBG03563	Animalia	Caenorhabditis_briggsae
RRM x 2	rnp-2	Animalia	Caenorhabditis_elegans
RRM x 2	Y111B2A.18	Animalia	Caenorhabditis_elegans
RRM x 2	W02B12.2	Animalia	Caenorhabditis_elegans
RRM x 2	K08D10.3	Animalia	Caenorhabditis_elegans
RRM x 2	ENSDARG00000036161	Animalia	Danio rerio

GAAGA CGCGC GAAGAAG AGyAG AUCCA AAAAg <u>_____GAGG___</u> UUUULEE AGCAC UAGGA GCACUU AUUAGGA BUUUUA ...AGUAA _<mark>______GA___GA</mark> GCACUU ASGA GA GGAGGAG AUAGeA

RRM x 2	FBgn0031607	Animalia	Drosophila_melanogaster	g
RRM x 2	РТВР2	Animalia	Homo_sapiens	•12
RRM x 2	CPEB1	Animalia	Homo_sapiens	
RRM x 2	ENSMGAG00000016128	Animalia	Meleagris_gallopavo	-
RRM x 2	ENSMGAG0000006135	Animalia	Meleagris_gallopavo	U
RRM x 2	ENSXETG00000027221	Animalia	Xenopus_tropicalis	200
RRM x 2	ENSXETG00000026650	Animalia	Xenopus_tropicalis	_
RRM x 2	PGTG_09691	Fungi	Puccinia_graminis	U
RRM x 2	spo5	Fungi	Saccharomyces_cerevisiae	
RRM x 2	srp2	Fungi	Saccharomyces_cerevisiae	_
RRM x 2	SPCC306.04c	Fungi	Schizosaccharomyces_pombe	2
RRM x 2	AT2G46610	Plantae	Arabidopsis_thaliana	-
RRM x 2	AT2G41060	Plantae	Arabidopsis_thaliana	9
RRM x 2	PK03611.1	Plantae	Cannabis_sativa	_
RRM x 2	PK03611.1	Plantae	Cannabis_sativa	
RRM x 2	PK15181.1	Plantae	Cannabis_sativa	
RRM x 2	PK04894.1	Plantae	Cannabis sativa	A
RRM x 2	PK14112.1	Plantae	– Cannabis sativa	
RRM x 2	PK11774.1	Plantae	_ Cannabis sativa	Û
RRM x 2	PK25912.1	Plantae	_ Cannabis sativa	Ū
RRM x 2	PK00513.1	Plantae	Cannabis sativa	
RRM x 3	DDB G0270634	Amoebozoa	Dictvostelium discoideum	U
RRM v 3	CBG15837	Animalia	Caenorhabditis briggsae	
INNIA 2	0013031	Animana	cacitor nabalitis_briggsdC	-

AUAUU <u>...uuc</u>U JUUUUU. __UGCG GCAC AAAAA CGACG GAUG ccGGGG ACGA JUUUU Ualgug **U_OU_GUG** GG_G_B UAGgoo AAAyuu

New RBPs identified recently by mass spectrometry

The mRNA-Bound Proteome and Its Global Occupancy Profile on Protein-Coding Transcripts

Alexander G. Baltz,^{1,3} Mathias Munschauer,^{1,3} Björn Schwanhäusser,¹ Alexandra Vasile,¹ Yasuhiro Murakawa,¹ Markus Schueler,¹ Noah Youngs,² Duncan Penfold-Brown,² Kevin Drew,² Miha Milek,¹ Emanuel Wyler,¹ Richard Bonneau,² Matthias Selbach,¹ Christoph Dieterich,¹ and Markus Landthaler^{1,*} ¹Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany ²Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA

Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins

Alfredo Castello,^{1,4} Bernd Fischer,^{1,4} Katrin Eichelbaum,¹ Rastislav Horos,¹ Benedikt M. Beckmann,¹ Claudia Strein,¹ Norman E. Davey,¹ David T. Humphreys,² Thomas Preiss,^{2,3} Lars M. Steinmetz,¹ Jeroen Krijgsveld,^{1,*} and Matthias W. Hentze^{1,2,*}

¹European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg 69117, Germany

²Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia

³Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Acton ACT 0200, Australia

Human ucRBPs are often sequence specific (initial result: 9/37 = 24% yield motif)

DUFs

No Known Domain

21

28

Ribosomal protein

ssDNA binding protein, mitochondrial biogenesis

(Positive control)

MORRIS LAB

XIAO LI (STANFORD) HILAL KAZAN (AIU)

WEI JIAO (OICR) GERALD QUON (MIT) HOSSEIN RADFAR (OICR) AMIT DESHWAR

SHANKAR VEMBL

KEVIN HA SIMON ENG KHALID ZUBERI MAX FRANZ JASON MONTOJO HAROLD RODRIGUEZ

JEFF WINTERSINGER CHRIS CREMER

TIMOTHY HUGHES DEB RAY KATE COOK

MATT WEIRAUCH (CCH) HAMED NAJAFABADI MIHAI ALBU HONG ZHENG ALLY YANG

BEN BLENCOWE SERGE GUEROUSSOV MANUEL IRIMIA

ANDY FRASER ARUN RAMANI HOWARD LIPSHITZ CRAIG SMIBERT JOHN LAVER KRISTIN ANCEVICIUS W/ TIM WESTWOOD

Funding

<u>JEROME WALDISPÜHL</u> (mcgill, montreal) VLADIMIR REINHARZ

71

Hong Na (Ben Blencowe), Leah Matzat, Ryan Dale (Elissa Lei), Sarah Smith, Christopher Yarosh (Kristen Lynch), Behnam Nabet (Russ Carstens), Desirea Mecenas (Fabio Piano), Seth Kelly (Anita Corbett), Weimin Li, Rakesh Laishram (Richard Anderson), Mei Qiao (Luiz Penalva)