APPROACHING THE QUANTUM LIMIT FOR METAL NANOPARTICLE PLASMONICS

Emily Townsend, Alex Debrecht and Garnett W. Bryant

Quantum Measurement Division and the Joint Quantum Institute

National Institute of Standards and Technology, Gaithersburg, MD University of Maryland, College Park, MD

Quantum plasmonics

• Understanding metal nanoparticles and nanoantennas: small sizes and small gaps ... Tunneling, charge spillout and nonlocal response

 Quantum nanoscale communication and single plasmons

... coherent excitation transport, quantum optics

- Hybrid structures
 - ... classical or quantized plasmons

Nanohybrids: Classical or Quantum

Different models for nanohybrids

•Quantum dots (QD) as classical dipoles with classical metallic nanoparticles (MNP) ...enhancement and quenching

•QD as a two-level quantum emitter with classical MNPs

- ... Nonlinear Fano effect, induced transparency, bistability
- ... Govorov et al, Sadeghi et al, Artuso, Bryant, et al, ...

•QD as a two-level quantum emitter and MNPs with quantized plasmons

- ... No bistability, noise effects, correct inclusion of Purcell effect
- ... Near-field quantization: mode quantization as in a cavity
- ... Near-field quantization: spectrum of local oscillators

Matter point of view: approaching the quantum limit for MNPs <u>Size quantization</u>, quantized matter modes and quantized fields

Matter point of view

Finding the plasmons

- •Challenging many "few-body" problem with confinement effects, quantization
- •Single-particle vs collective (plasmons) or mixed?
- •Size dependence of excitation energies and response
- •Spatial character of resonance charge densities

How?

- Density functional theory
 - ... MNPs and dimers: Nordlander et al., Aizpurua, Borisov, et al., ET and GWB , ...
 - ... 1D surface atom chains: Gao et al., Ruud et al., ...
 - ... Linear molecules, CNT, etc., ...: Jacob et al., Aiken, Schatz, et al, Garcia de Abajo et al., ...
- Exact approaches: Luttinger theory
- Exact approaches: finite 1D chains
 - ... Short chains (<15 atoms): full spectrum
 - .. Long chains: selected energy ranges

What can be learned about plasmons in small systems?

•Time-dependent density functional theory (TDDFT)

- ... Time dependent response or response function
- Size quantization ... 100-600 electron MNPs
- •Collective or single-particle response
- •Characterizing modes: "sloshing" and "inversion"
- Exact approaches: short 1D chains, full spectrum

Size quantization: density functional theory

- Spherical Au nanoparticles
- Jellium model
- 100-600 valence electrons

1.47 nm = 27.8 a_o

DFT ground state

Time Dependent Density Functional Theory

Ground State DFT... find occupied Kohn-Sham orbitals

Time Dependent DFT

- Frequency response from instantaneous impulse
- Simulation time defines peak widths
- Drive on-resonance to characterize resonances

Size quantization: 100-600 electron MNPs

Townsend and Bryant, Nano Lett. 12, 429 (2012)

Classical surface plasmons and quantum core plasmons

Small spherical MNPs (~ 100 electrons)

- Discrete modes
- Excitations: $\Delta L = \pm 1$
- Many-electron collective response or single-particle response
- •Charge oscillations: surface, core or both?

Transition to classical surface plasmons (300-600 electrons)

Robust solutions...dependence on simulation size

 $\mathsf{R}_{\mathsf{sim}}$

Dependence on MNP size

- •Surface plasmon (the collective response?) becomes dominant for 600 e MNPs
- •Core plasmon and mixed plasmons much weaker
- •Width of main peaks defines surface plasmon width?

- Implication for quantization model
 - ... Single mode or multimode?

Collective or single-particle?

Time dependent overlaps between the evolving Kohn-Sham orbitals and the t=0 (ie ground state) Kohn-Sham orbitals

- Diagonal overlaps ... change in level occupation
- •Off diagonal overlaps ... transitions with $\Delta L = \pm 1$
- Which are single-particle or collective
- •Linear or non-linear?
- •TDDFT or response function?

Collective or single-particle?

4 classes of transitions

Collective or single-particle?

Characterizing modes: "sloshing" and "inversion"

- Problem: modes are mixed
- •What characterizes plasmonic response: "sloshing"
- •What characterizes single-particle component: "inversion"
- •Change in shell occupation
- •Time-dependence and Fourier (spectral) response

Frequency content of each resonance: sloshing vs inversion

Townsend and Bryant, J. of Optics 16, 114002 (2014)

- Fermi level E_f is in the 2f shell
- Emptying shells (blue)
- Filling shells (red)

For core and surface plasmons, temporal response of shell occupations shows

Sloshing

 \cdot Charge oscillating between filled shells just below the Fermi level E_{f} and empty shells just above E_{f}

• Plasmonic component, stronger for surface plasmons

Inversion

 Charge continuously emptying from filled shells far below E_f to empty shells far above E_f
Single-particle transitions, stronger for core plasmons

Where in the MNP are these transitions?

Density functional theory: what is missing?

- •Optically driven states...no dark resonances
- •No correlation effects in charge densities
- Quantized excitations ?
- •Fermions or bosons?

Use exact approach for simple 1D chain models to investigate these effects

Finite 1D chain: simple toy model

1D plasmons: linear molecules, atomic chains on surfaces, P dopants in Si

- <u>Coulomb-coupled</u>, half-filled band of electrons: 1 spinless electron per 2 sites
- Kinetic energy: nearest-neighbor hopping

• Atom-electron coupling:
$$Z = n_e/n_{site}$$

$$V_{nuc}(i) = -\sum_{j} \lambda_{nuc} Z/(|i - j| + \xi_{nuc})$$

• Electron-electron interaction:

$$V_{ee}(i,j) = \lambda_{ee}/(|i - j| + \xi_{ee})$$

- Charge neutrality: $\lambda_{nuc} = \lambda_{ee}$
- Applied field along the chain axis: $E(i i_{mid})$

Small, linear 1D chains: length dependence

... 12 sites, 924 states ... charge neutral

Length dependence

... 10 times denser spectrum ... similar dependence on ee-interaction ... similar length scaling with and without interaction

Small, linear 1D chains: bright or dark excitations?

... dark excitations: dipole-forbidden by parity or multi-excitations ... 8 sites: 13% (no interaction), 28% (with interaction) are bright ... 12 sites: <2% (no interaction), 27% (with interaction) are bright

Small, linear 1D chains: where are the plasmons? what makes a plasmon...smoking gun?

Small, linear 1D chains: where are the plasmons? what makes a plasmon...smoking gun?

Small, linear 1D chains: where are the plasmons? what makes a plasmon...smoking gun?

Linear 1D chains: what are the plasmons?

Speculation

... higher energy, multielectron excitations ... Coulomb induced transition dipole moments ... resonant response: no explicit excitation with clear spatial characteristics

What next?

... driven states

... smoking guns for plasmons

... longer chains: do plasmons clearly appear?

... excitations: bosonic, fermionic or ...

- ... nonlinear effects
- ... short vs long range

What can be learned about plasmons in small systems? A matter point of view

- •Time-dependent density functional theory (TDDFT)
 - ... Time dependent response or response function
- Size quantization ... 100-600 electron MNPs
- •Collective or single-particle response
- •Characterizing modes: "sloshing" and "inversion"
- Exact approaches: short 1D chains, full spectrum

Small, linear 1D chains: dependence on interaction with atoms

... 8 sites, 70 states

... similar spectra for each type of atom-electron coupling ... similar trends

No atom interaction

Fixed atom interaction

