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Quantum information processing
Challenge: make gates between atoms

Waveguide:

Works in principle

Fidelity limited

Cavity:

*D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, Phys. Rev. B 82, 075427 (2010) 

Limited fidelity*: 

1� F / 1p
C

1� F /
p

1� �



Making use of imperfect coupling
Bad scaling can be overcome
Possible solutions:

- Probabilistic generation of entanglement1

F ≈ 1,   P <1

- Measurement and feedback2

- Dissipative generation of entanglement3

1� F / 1

⌘C

1� F / 1
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-  Heralded quantum gates4

F ≈ 1,   P <1

1 C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, Phys. Rev. A 59, 1025 (1999). 
2 AS. and Klaus Mølmer, Phys. Rev. Lett. 91, 097905 (2003). 
3 M. J. Kastoryano, F. Reiter, and AS., Phys. Rev. Lett. 106, 090502 (2011). 
4 L.-M. Duan, B. Wang, and H. J. Kimble, Phys. Rev. A 72, 032333 (2005), J. Borregaard, P. Komar, E. Kessler,  AS, and M. D. Lukin, arXiv:
1501.00956, PRL in press 



Making use of imperfect coupling
Bad scaling can be overcome
Possible solutions:

- Probabilistic generation of entanglement1

F ≈ 1,   P <1

- Measurement and feedback2

- Dissipative generation of entanglement3

1� F / 1

⌘C

1� F / 1

C

-  Heralded quantum gates4

F ≈ 1,   P <1

This talk

1 C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, Phys. Rev. A 59, 1025 (1999). 
2 AS. and Klaus Mølmer, Phys. Rev. Lett. 91, 097905 (2003). 
3 M. J. Kastoryano, F. Reiter, and AS., Phys. Rev. Lett. 106, 090502 (2011). 
4 L.-M. Duan, B. Wang, and H. J. Kimble, Phys. Rev. A 72, 032333 (2005), J. Borregaard, P. Komar, E. Kessler,  AS, and M. D. Lukin, arXiv:
1501.00956, PRL in press 



Entangling superconducting 
qubits coupled to molecules 

in waveguides

Preliminary work
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Probabilistic entanglement

|0⟩
|1⟩

|e⟩

Start |00⟩

Photon click =>

Waveguides: increase efficiency

Non-local entanglement generation 

Highly important for quantum communication

1p
2
(|01i± |10i)
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Superconducting qubit

Picture: Schoelkopf group

Highly advanced system for quantum computation

Can’t couple to light => not useful for communication

Proposals: Put atom nearby => mediate coupling to light

Problem: superconductors don’t like light

Send in light through waveguide => need very little light (one photon)



Molecules in waveguides

Experiments S. Faez, V. Sandoghdar: molecules in hollow core fiber

Can have good coupling* 𝛽 ≈ 10%

*S. Faez, P. Türschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar, Phys. Rev. Lett. 113, 213601 (2014)

Low temperatures: transitions nearly radiatively limited

Only a single ground state => not useful as a qubit
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Problem

Qubit couple to molecular dipole and all other dipoles = charge noise

=> Charge qubit
|1⟩ Cooper pair on island

|0⟩ No Cooper pair on island

Noise suppressed by going to degeneracy E0=E1

Tunnelling average out noise

New eigenstates: |±i = |0i± |1ip
2

=> coupling to dipole average out
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Entangling two qubits

Send in blue

Detect red photon =>

Qubits can be entangled by pulses containing 1-10 photons

Good coupling � & 10%

1p
2
(|+�i± |�+i)

* S. Das, S. Faez, ad AS in preparation
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Heralded gates
Probabilistic generation of entanglement 

1p
2
(|01i± |10i)

Z

|00i ! |00i
|01i ! |01i
|10i ! |10i
|11i ! �|11i

Insensitive to losses

Click generate entangled state

F ≈ 1, P << 1
1� F / 1p

C

Deterministic, limited fidelity

Quantum gates

Heralded gates: F ≈ 1, P <1 ?
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Scattering gates
One sided cavity:

* L.-M. Duan, B. Wang, and H. J. Kimble, Phys. Rev. A 72, 032333 (2005)

|0⟩
|1⟩

|e⟩

|00i ! |00i
|01i ! |01i
|10i ! |10i
|11i ! �|11i

Atoms in |0⟩ block cavity

Photon only enters cavity if atoms are |11⟩  

Scatter resonant photon off cavity

Works in principle but sensitive to losses

Detect photon leaving cavity => high fidelity when detector clicks

g
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Auxiliary atom

|0⟩
|1⟩

|e⟩

Requires: single photon source and efficient in/output, detection

Solution: add auxiliary atom as 
source and detector

g

|g⟩
|f⟩

|e⟩

g
Ω 𝛾Assume |g⟩ to |f⟩ transition closed 

Any decay leaves the atom in |f⟩

Atom heralds succesful gate



Two photon driving

|g⟩ |f⟩

|e⟩

g
Ω 𝛾

* J. Borregaard, P. Komar, E. Kessler,  AS, and M. D. Lukin, arXiv:1501.00956, Phys. Rev. Lett. in press 



Two photon driving

|g⟩ |f⟩

|e⟩

g

𝛾
|e’⟩

Ω ΩMW

Drive closed transition with two photon driving

𝚫2

* J. Borregaard, P. Komar, E. Kessler,  AS, and M. D. Lukin, arXiv:1501.00956, Phys. Rev. Lett. in press 



Two photon driving

|g⟩ |f⟩

|e⟩

g

𝛾

3

The dynamics described by Ĥe↵ can be used to im-
plement a To↵oli gate. Assuming the qubit atoms to be
on resonance (�

e

= 0) and having �
E

⇠ �
p
C gives en-

ergy shifts �
n>0 ⇠ ⌦2/(4�

p
C) while �0 ⇠ O(⌦2/C3/2).

Hence, |00...0i is the only state, which remains unshifted
and we can choose a gate time of tT ⇠ 4⇡

p
C�/⌦2 to

make a To↵oli gate. By conditioning on measuring the
auxiliary atom in state |gi at the end of the gate, the de-
tectable errors from cavity decay and spontaneous emis-
sion only reduce the success probability instead of reduc-
ing the fidelity. Consequently, the fidelity becomes lim-
ited by more subtle, undetectable errors (see Ref. [29]).
The dominant error originates from the qubit dependent
decay rate, �

n

, of |gi ! |fi. As we demonstrate in
Ref. [29], this leads to a fidelity lower bounded by 1�F .
0.3/C, with a success probability of Ps ⇠ 1 � 3/

p
C.

Thus is a substantial improvement over the leading er-
ror in the case of deterministic cavity-assisted gates. For
generic states, the fidelity can even be markedly higher,
and improving with increasing particle number N [29]

In the special case of only two qubits, the To↵oli gate
is referred to as a CZ-gate, and in this case, we can even
improve the gate to have an arbitrarily small error by
combining it with single qubit rotations. For the gen-
eral To↵oli gate discussed above, we needed �

e

= 0 to
ensure the correct phase evolution, but making the sin-
gle qubit transformations |0i ! e�i�0t/2|0i and |1i !
e�i(�1��0)t/2|0i, at the end of a driving pulse of length
tCZ = |⇡/(�2 � 2�1 +�0)|, ensures the right phase evo-
lution of the CZ-gate without any constraints on �

e

.
Hence, it is possible to tune �

e

to eliminate the detri-
mental e↵ect of having a qubit dependent decay rate.
Choosing �

E

= �

2

p
4C + 1 and �

e

= 1
2C�2/�

E

ensures
�0 = �1 = �2, and thus removes all dissipative errors
from the heralded gate. The conditional error is then
limited only by non-adiabatic e↵ects, that can in prin-
ciple be made arbitrarily small by reducing the driving
strength. The success probability is 1 � Ps ⇠ 6/

p
C in

the limit C � 1 (see Fig. 2a). We thus have a heralded
two qubit gate with arbitrarily small error with a success
probability that can approach 1 (it is possible to decrease
the scaling factor of the probability from ⇠ 6 to ⇠ 3.4 at
the expense of an error scaling as 1/C by tuning�

E

,�
e

).
We now consider the gate time. The gate time of the

To↵oli gate is tT ⇠ 4⇡
p
C�/⌦2 and for the CZ-gate we

have tCZ ⇠ 15⇡
p
C�/(2⌦2) for C � 1. Since tCZ > tT we

focus on tCZ. The gate time is set by the strength (⌦)
of the driving pulse, which is limited by non-adiabatic
errors. This is investigated in the supplemental mate-
rial where we also verify our analytical results numeri-
cally [29]. Assuming realisitc parameters of  = 100�
[23, 31], we find that a driving of ⌦ =

p
C�/4 keeps

the non-adiabatic error of the gate below 4 · 10�5 for
C  1000. The gate times decreases as 1/

p
C as shown

in Fig. 2a. For a cooperativity of 100 the gate time is
⇡ 1 µs for typical atomic decay rates.
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FIG. 2. (Color online)(a) Failure probability (1�Ps - left axis)
and gate time (tCZ -right axis) as a function of the cooperativ-
ity (C) for the CZ gate. The gate time is in units of the inverse
linewidth 1/� of the qubit atoms. We have assumed a driving
of ⌦ =

p
C�/4. (b) Gate error as a function of the detun-

ing �E2 in the two-photon-driven CZ-gate for C = 10, 20, 50,
and 100. We have assumed that ⌦MW = 4�C1/4 and that
�g = �. The gate error decreases as �

2
/�2

E2 and is indepen-
dent of C. We have assumed ⌦ ⇠ �E2/8 resulting in a gate
time ⇠ 400/�. Solid/dashed lines are analytical results and
symbols are numerical simulations (see [29]). For both plots,
we have assumed  = 100�.

So far, we have assumed a model where there is no
decay from |Ei ! |gi. In real atoms, there will, however,
always be some decay |Ei ! |gi with a decay rate �

g

> 0.
The result of such an undetectable decay is that both
the CZ-gate and the To↵oli gate will have an error ⇠
�
g

/(�
p
C). To make this error small, it is thus essential

to suppress the branching ratio �
g

/�. Below we show how
to suppress �

g

by driving the |gi ! |Ei transition with
a two photon process. As a result, we realize a CZ gate
with an error arbitrary close to zero and a To↵oli gate
with an error scaling as 1/C even for a realistic atomic
system.

Specifically we think of a level structure for the aux-
iliary atom, shown in Fig. 3, where we still assume
|Ei $ |fi to be a closed transition. For simplicity, we
have also assumed |E2i $ |gi to be a closed transition.
Such a level structure could, e.g. be realized in 87Rb as
shown in Fig. 3. We assume that a microwave field cou-
ples the two excited states such that we can have a two
photon transition from |gi ! |Ei and that ⌦ is small, al-
lowing for a perturbative treatment of the coupling. Thus
we can map the system to a simple three-level atom with
levels |gi, |Ei and |fi and a decay rate �̃

g

and drive ⌦̃
between |gi and |Ei, determined by the two photon driv-
ing process as shown in Fig. 3. The dynamics are thus
similar to what we have already described for the sim-
ple three level atom except that we have the extra decay
�̃
g

that introduces an error in the gates ⇠ (�̃
g

/�)/
p
C,

as previously described. In the limit C � 1, we find

�̃
g

/� ⇠ �g⌦
2
MW

4��2
E2

. Thus by increasing �
E2, we can in prin-

ciple make these errors arbitrarily small. The error of
the CZ-gate for di↵erent �

E2 is shown in Fig. 2b, as-
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The dynamics described by Ĥe↵ can be used to im-
plement a To↵oli gate. Assuming the qubit atoms to be
on resonance (�

e

= 0) and having �
E

⇠ �
p
C gives en-

ergy shifts �
n>0 ⇠ ⌦2/(4�

p
C) while �0 ⇠ O(⌦2/C3/2).

Hence, |00...0i is the only state, which remains unshifted
and we can choose a gate time of tT ⇠ 4⇡

p
C�/⌦2 to

make a To↵oli gate. By conditioning on measuring the
auxiliary atom in state |gi at the end of the gate, the de-
tectable errors from cavity decay and spontaneous emis-
sion only reduce the success probability instead of reduc-
ing the fidelity. Consequently, the fidelity becomes lim-
ited by more subtle, undetectable errors (see Ref. [29]).
The dominant error originates from the qubit dependent
decay rate, �

n

, of |gi ! |fi. As we demonstrate in
Ref. [29], this leads to a fidelity lower bounded by 1�F .
0.3/C, with a success probability of Ps ⇠ 1 � 3/

p
C.

Thus is a substantial improvement over the leading er-
ror in the case of deterministic cavity-assisted gates. For
generic states, the fidelity can even be markedly higher,
and improving with increasing particle number N [29]

In the special case of only two qubits, the To↵oli gate
is referred to as a CZ-gate, and in this case, we can even
improve the gate to have an arbitrarily small error by
combining it with single qubit rotations. For the gen-
eral To↵oli gate discussed above, we needed �

e

= 0 to
ensure the correct phase evolution, but making the sin-
gle qubit transformations |0i ! e�i�0t/2|0i and |1i !
e�i(�1��0)t/2|0i, at the end of a driving pulse of length
tCZ = |⇡/(�2 � 2�1 +�0)|, ensures the right phase evo-
lution of the CZ-gate without any constraints on �

e

.
Hence, it is possible to tune �

e

to eliminate the detri-
mental e↵ect of having a qubit dependent decay rate.
Choosing �

E

= �

2

p
4C + 1 and �

e

= 1
2C�2/�

E

ensures
�0 = �1 = �2, and thus removes all dissipative errors
from the heralded gate. The conditional error is then
limited only by non-adiabatic e↵ects, that can in prin-
ciple be made arbitrarily small by reducing the driving
strength. The success probability is 1 � Ps ⇠ 6/

p
C in

the limit C � 1 (see Fig. 2a). We thus have a heralded
two qubit gate with arbitrarily small error with a success
probability that can approach 1 (it is possible to decrease
the scaling factor of the probability from ⇠ 6 to ⇠ 3.4 at
the expense of an error scaling as 1/C by tuning�

E

,�
e

).
We now consider the gate time. The gate time of the

To↵oli gate is tT ⇠ 4⇡
p
C�/⌦2 and for the CZ-gate we

have tCZ ⇠ 15⇡
p
C�/(2⌦2) for C � 1. Since tCZ > tT we

focus on tCZ. The gate time is set by the strength (⌦)
of the driving pulse, which is limited by non-adiabatic
errors. This is investigated in the supplemental mate-
rial where we also verify our analytical results numeri-
cally [29]. Assuming realisitc parameters of  = 100�
[23, 31], we find that a driving of ⌦ =

p
C�/4 keeps

the non-adiabatic error of the gate below 4 · 10�5 for
C  1000. The gate times decreases as 1/

p
C as shown

in Fig. 2a. For a cooperativity of 100 the gate time is
⇡ 1 µs for typical atomic decay rates.
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FIG. 2. (Color online)(a) Failure probability (1�Ps - left axis)
and gate time (tCZ -right axis) as a function of the cooperativ-
ity (C) for the CZ gate. The gate time is in units of the inverse
linewidth 1/� of the qubit atoms. We have assumed a driving
of ⌦ =

p
C�/4. (b) Gate error as a function of the detun-

ing �E2 in the two-photon-driven CZ-gate for C = 10, 20, 50,
and 100. We have assumed that ⌦MW = 4�C1/4 and that
�g = �. The gate error decreases as �

2
/�2

E2 and is indepen-
dent of C. We have assumed ⌦ ⇠ �E2/8 resulting in a gate
time ⇠ 400/�. Solid/dashed lines are analytical results and
symbols are numerical simulations (see [29]). For both plots,
we have assumed  = 100�.

So far, we have assumed a model where there is no
decay from |Ei ! |gi. In real atoms, there will, however,
always be some decay |Ei ! |gi with a decay rate �

g

> 0.
The result of such an undetectable decay is that both
the CZ-gate and the To↵oli gate will have an error ⇠
�
g

/(�
p
C). To make this error small, it is thus essential

to suppress the branching ratio �
g

/�. Below we show how
to suppress �

g

by driving the |gi ! |Ei transition with
a two photon process. As a result, we realize a CZ gate
with an error arbitrary close to zero and a To↵oli gate
with an error scaling as 1/C even for a realistic atomic
system.

Specifically we think of a level structure for the aux-
iliary atom, shown in Fig. 3, where we still assume
|Ei $ |fi to be a closed transition. For simplicity, we
have also assumed |E2i $ |gi to be a closed transition.
Such a level structure could, e.g. be realized in 87Rb as
shown in Fig. 3. We assume that a microwave field cou-
ples the two excited states such that we can have a two
photon transition from |gi ! |Ei and that ⌦ is small, al-
lowing for a perturbative treatment of the coupling. Thus
we can map the system to a simple three-level atom with
levels |gi, |Ei and |fi and a decay rate �̃

g

and drive ⌦̃
between |gi and |Ei, determined by the two photon driv-
ing process as shown in Fig. 3. The dynamics are thus
similar to what we have already described for the sim-
ple three level atom except that we have the extra decay
�̃
g

that introduces an error in the gates ⇠ (�̃
g

/�)/
p
C,

as previously described. In the limit C � 1, we find

�̃
g

/� ⇠ �g⌦
2
MW

4��2
E2

. Thus by increasing �
E2, we can in prin-

ciple make these errors arbitrarily small. The error of
the CZ-gate for di↵erent �

E2 is shown in Fig. 2b, as-
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The dynamics described by Ĥe↵ can be used to im-
plement a To↵oli gate. Assuming the qubit atoms to be
on resonance (�

e

= 0) and having �
E

⇠ �
p
C gives en-

ergy shifts �
n>0 ⇠ ⌦2/(4�

p
C) while �0 ⇠ O(⌦2/C3/2).

Hence, |00...0i is the only state, which remains unshifted
and we can choose a gate time of tT ⇠ 4⇡

p
C�/⌦2 to

make a To↵oli gate. By conditioning on measuring the
auxiliary atom in state |gi at the end of the gate, the de-
tectable errors from cavity decay and spontaneous emis-
sion only reduce the success probability instead of reduc-
ing the fidelity. Consequently, the fidelity becomes lim-
ited by more subtle, undetectable errors (see Ref. [29]).
The dominant error originates from the qubit dependent
decay rate, �

n

, of |gi ! |fi. As we demonstrate in
Ref. [29], this leads to a fidelity lower bounded by 1�F .
0.3/C, with a success probability of Ps ⇠ 1 � 3/

p
C.

Thus is a substantial improvement over the leading er-
ror in the case of deterministic cavity-assisted gates. For
generic states, the fidelity can even be markedly higher,
and improving with increasing particle number N [29]

In the special case of only two qubits, the To↵oli gate
is referred to as a CZ-gate, and in this case, we can even
improve the gate to have an arbitrarily small error by
combining it with single qubit rotations. For the gen-
eral To↵oli gate discussed above, we needed �

e

= 0 to
ensure the correct phase evolution, but making the sin-
gle qubit transformations |0i ! e�i�0t/2|0i and |1i !
e�i(�1��0)t/2|0i, at the end of a driving pulse of length
tCZ = |⇡/(�2 � 2�1 +�0)|, ensures the right phase evo-
lution of the CZ-gate without any constraints on �

e

.
Hence, it is possible to tune �

e

to eliminate the detri-
mental e↵ect of having a qubit dependent decay rate.
Choosing �

E

= �

2

p
4C + 1 and �

e

= 1
2C�2/�

E

ensures
�0 = �1 = �2, and thus removes all dissipative errors
from the heralded gate. The conditional error is then
limited only by non-adiabatic e↵ects, that can in prin-
ciple be made arbitrarily small by reducing the driving
strength. The success probability is 1 � Ps ⇠ 6/

p
C in

the limit C � 1 (see Fig. 2a). We thus have a heralded
two qubit gate with arbitrarily small error with a success
probability that can approach 1 (it is possible to decrease
the scaling factor of the probability from ⇠ 6 to ⇠ 3.4 at
the expense of an error scaling as 1/C by tuning�

E

,�
e

).
We now consider the gate time. The gate time of the

To↵oli gate is tT ⇠ 4⇡
p
C�/⌦2 and for the CZ-gate we

have tCZ ⇠ 15⇡
p
C�/(2⌦2) for C � 1. Since tCZ > tT we

focus on tCZ. The gate time is set by the strength (⌦)
of the driving pulse, which is limited by non-adiabatic
errors. This is investigated in the supplemental mate-
rial where we also verify our analytical results numeri-
cally [29]. Assuming realisitc parameters of  = 100�
[23, 31], we find that a driving of ⌦ =

p
C�/4 keeps

the non-adiabatic error of the gate below 4 · 10�5 for
C  1000. The gate times decreases as 1/

p
C as shown

in Fig. 2a. For a cooperativity of 100 the gate time is
⇡ 1 µs for typical atomic decay rates.
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FIG. 2. (Color online)(a) Failure probability (1�Ps - left axis)
and gate time (tCZ -right axis) as a function of the cooperativ-
ity (C) for the CZ gate. The gate time is in units of the inverse
linewidth 1/� of the qubit atoms. We have assumed a driving
of ⌦ =

p
C�/4. (b) Gate error as a function of the detun-

ing �E2 in the two-photon-driven CZ-gate for C = 10, 20, 50,
and 100. We have assumed that ⌦MW = 4�C1/4 and that
�g = �. The gate error decreases as �

2
/�2

E2 and is indepen-
dent of C. We have assumed ⌦ ⇠ �E2/8 resulting in a gate
time ⇠ 400/�. Solid/dashed lines are analytical results and
symbols are numerical simulations (see [29]). For both plots,
we have assumed  = 100�.

So far, we have assumed a model where there is no
decay from |Ei ! |gi. In real atoms, there will, however,
always be some decay |Ei ! |gi with a decay rate �

g

> 0.
The result of such an undetectable decay is that both
the CZ-gate and the To↵oli gate will have an error ⇠
�
g

/(�
p
C). To make this error small, it is thus essential

to suppress the branching ratio �
g

/�. Below we show how
to suppress �

g

by driving the |gi ! |Ei transition with
a two photon process. As a result, we realize a CZ gate
with an error arbitrary close to zero and a To↵oli gate
with an error scaling as 1/C even for a realistic atomic
system.

Specifically we think of a level structure for the aux-
iliary atom, shown in Fig. 3, where we still assume
|Ei $ |fi to be a closed transition. For simplicity, we
have also assumed |E2i $ |gi to be a closed transition.
Such a level structure could, e.g. be realized in 87Rb as
shown in Fig. 3. We assume that a microwave field cou-
ples the two excited states such that we can have a two
photon transition from |gi ! |Ei and that ⌦ is small, al-
lowing for a perturbative treatment of the coupling. Thus
we can map the system to a simple three-level atom with
levels |gi, |Ei and |fi and a decay rate �̃

g

and drive ⌦̃
between |gi and |Ei, determined by the two photon driv-
ing process as shown in Fig. 3. The dynamics are thus
similar to what we have already described for the sim-
ple three level atom except that we have the extra decay
�̃
g

that introduces an error in the gates ⇠ (�̃
g

/�)/
p
C,

as previously described. In the limit C � 1, we find

�̃
g

/� ⇠ �g⌦
2
MW

4��2
E2

. Thus by increasing �
E2, we can in prin-

ciple make these errors arbitrarily small. The error of
the CZ-gate for di↵erent �

E2 is shown in Fig. 2b, as-
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The dynamics described by Ĥe↵ can be used to im-
plement a To↵oli gate. Assuming the qubit atoms to be
on resonance (�

e

= 0) and having �
E

⇠ �
p
C gives en-

ergy shifts �
n>0 ⇠ ⌦2/(4�

p
C) while �0 ⇠ O(⌦2/C3/2).

Hence, |00...0i is the only state, which remains unshifted
and we can choose a gate time of tT ⇠ 4⇡

p
C�/⌦2 to

make a To↵oli gate. By conditioning on measuring the
auxiliary atom in state |gi at the end of the gate, the de-
tectable errors from cavity decay and spontaneous emis-
sion only reduce the success probability instead of reduc-
ing the fidelity. Consequently, the fidelity becomes lim-
ited by more subtle, undetectable errors (see Ref. [29]).
The dominant error originates from the qubit dependent
decay rate, �

n

, of |gi ! |fi. As we demonstrate in
Ref. [29], this leads to a fidelity lower bounded by 1�F .
0.3/C, with a success probability of Ps ⇠ 1 � 3/

p
C.

Thus is a substantial improvement over the leading er-
ror in the case of deterministic cavity-assisted gates. For
generic states, the fidelity can even be markedly higher,
and improving with increasing particle number N [29]

In the special case of only two qubits, the To↵oli gate
is referred to as a CZ-gate, and in this case, we can even
improve the gate to have an arbitrarily small error by
combining it with single qubit rotations. For the gen-
eral To↵oli gate discussed above, we needed �

e

= 0 to
ensure the correct phase evolution, but making the sin-
gle qubit transformations |0i ! e�i�0t/2|0i and |1i !
e�i(�1��0)t/2|0i, at the end of a driving pulse of length
tCZ = |⇡/(�2 � 2�1 +�0)|, ensures the right phase evo-
lution of the CZ-gate without any constraints on �

e

.
Hence, it is possible to tune �

e

to eliminate the detri-
mental e↵ect of having a qubit dependent decay rate.
Choosing �

E

= �

2

p
4C + 1 and �

e

= 1
2C�2/�

E

ensures
�0 = �1 = �2, and thus removes all dissipative errors
from the heralded gate. The conditional error is then
limited only by non-adiabatic e↵ects, that can in prin-
ciple be made arbitrarily small by reducing the driving
strength. The success probability is 1 � Ps ⇠ 6/

p
C in

the limit C � 1 (see Fig. 2a). We thus have a heralded
two qubit gate with arbitrarily small error with a success
probability that can approach 1 (it is possible to decrease
the scaling factor of the probability from ⇠ 6 to ⇠ 3.4 at
the expense of an error scaling as 1/C by tuning�

E

,�
e

).
We now consider the gate time. The gate time of the

To↵oli gate is tT ⇠ 4⇡
p
C�/⌦2 and for the CZ-gate we

have tCZ ⇠ 15⇡
p
C�/(2⌦2) for C � 1. Since tCZ > tT we

focus on tCZ. The gate time is set by the strength (⌦)
of the driving pulse, which is limited by non-adiabatic
errors. This is investigated in the supplemental mate-
rial where we also verify our analytical results numeri-
cally [29]. Assuming realisitc parameters of  = 100�
[23, 31], we find that a driving of ⌦ =

p
C�/4 keeps

the non-adiabatic error of the gate below 4 · 10�5 for
C  1000. The gate times decreases as 1/

p
C as shown

in Fig. 2a. For a cooperativity of 100 the gate time is
⇡ 1 µs for typical atomic decay rates.
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FIG. 2. (Color online)(a) Failure probability (1�Ps - left axis)
and gate time (tCZ -right axis) as a function of the cooperativ-
ity (C) for the CZ gate. The gate time is in units of the inverse
linewidth 1/� of the qubit atoms. We have assumed a driving
of ⌦ =

p
C�/4. (b) Gate error as a function of the detun-

ing �E2 in the two-photon-driven CZ-gate for C = 10, 20, 50,
and 100. We have assumed that ⌦MW = 4�C1/4 and that
�g = �. The gate error decreases as �

2
/�2

E2 and is indepen-
dent of C. We have assumed ⌦ ⇠ �E2/8 resulting in a gate
time ⇠ 400/�. Solid/dashed lines are analytical results and
symbols are numerical simulations (see [29]). For both plots,
we have assumed  = 100�.

So far, we have assumed a model where there is no
decay from |Ei ! |gi. In real atoms, there will, however,
always be some decay |Ei ! |gi with a decay rate �

g

> 0.
The result of such an undetectable decay is that both
the CZ-gate and the To↵oli gate will have an error ⇠
�
g

/(�
p
C). To make this error small, it is thus essential

to suppress the branching ratio �
g

/�. Below we show how
to suppress �

g

by driving the |gi ! |Ei transition with
a two photon process. As a result, we realize a CZ gate
with an error arbitrary close to zero and a To↵oli gate
with an error scaling as 1/C even for a realistic atomic
system.

Specifically we think of a level structure for the aux-
iliary atom, shown in Fig. 3, where we still assume
|Ei $ |fi to be a closed transition. For simplicity, we
have also assumed |E2i $ |gi to be a closed transition.
Such a level structure could, e.g. be realized in 87Rb as
shown in Fig. 3. We assume that a microwave field cou-
ples the two excited states such that we can have a two
photon transition from |gi ! |Ei and that ⌦ is small, al-
lowing for a perturbative treatment of the coupling. Thus
we can map the system to a simple three-level atom with
levels |gi, |Ei and |fi and a decay rate �̃

g

and drive ⌦̃
between |gi and |Ei, determined by the two photon driv-
ing process as shown in Fig. 3. The dynamics are thus
similar to what we have already described for the sim-
ple three level atom except that we have the extra decay
�̃
g

that introduces an error in the gates ⇠ (�̃
g

/�)/
p
C,

as previously described. In the limit C � 1, we find

�̃
g

/� ⇠ �g⌦
2
MW

4��2
E2

. Thus by increasing �
E2, we can in prin-

ciple make these errors arbitrarily small. The error of
the CZ-gate for di↵erent �

E2 is shown in Fig. 2b, as-
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Can make gate with F≈1 for ANY cavity

=> It works

𝚫2

Probabilistic 1� P / 1p
C

Realistic Ex: 87Rb, C = 100 

F = 1-10-3

P = 67%

𝜏 = 10 μs

* J. Borregaard, P. Komar, E. Kessler,  AS, and M. D. Lukin, arXiv:1501.00956, Phys. Rev. Lett. in press 
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Application: quantum repeaters

Long distance communication requires repeaters

Loss in optical fibers: exponential damping

Generate entanglement over short distance

Gates=> swap entanglement get swapped to long distance

Still works for probabilistic gates (scaling polynomial, not exponential)
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F ⇡ 1

1� P ⇠ 1/
p
C

Deterministic gate
1-F ~1/C 

Distance 1000 km, optimize over “all” parameters

It is better to admit you don’t know what to do than to do something wrong

* J. Borregaard, P. Komar, E. Kessler,  AS, and M. D. Lukin, in preparation



Conclusion

Light matter interaction essential for quantum communication

Direct connections with light have a bad scaling

Bad scaling can be overcome

Examples:

Entangling superconducting qubits through nearby molecules in waveguides 

Heralded gates in optical cavities F ⇡ 1

1� P ⇠ 1/
p
C
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