The Obstacle Problem for the Total Variation

Thomas Schmidt
Department Mathematik, FAU Erlangen-Nürnberg

(joint work with Christoph Scheven, Universität Duisburg-Essen)

Benasque, August 31, 2015
The TV obstacle problem

Consider

- a bounded open set Ω in \(\mathbb{R}^n \), \(n \) positive integer,
- an obstacle \(\psi : \overline{\Omega} \to \mathbb{R} \) with \(\psi \leq 0 \) on \(\partial \Omega \).

Obstacle problem: Minimize the total variation (TV)

\[
\int_{\Omega} |\nabla u| \, dx
\]

among functions \(u : \overline{\Omega} \to \mathbb{R} \) with

\[
u \equiv 0 \text{ on } \partial \Omega \quad \text{and} \quad u \geq \psi \text{ on } \Omega.\]
The generalized TV obstacle problem

Natural space for existence results (thanks to weak* compactness):

\[\text{BV}_0(\Omega) := \left\{ u \in L^1(\mathbb{R}^n) : \text{gradient } D u \text{ is finite measure on } \mathbb{R}^n \right. \]
\[\quad \left. \text{and } u \equiv 0 \text{ a.e. on } \mathbb{R}^n \setminus \Omega \right\} \]

(contains \(W^{1,1}_{(0)}(\Omega) \), but also \(u \) with jumps along hypersurfaces in \(\overline{\Omega} \)).
The generalized TV obstacle problem

Natural space for existence results (thanks to weak* compactness):

$$BV_0(\Omega) := \left\{ u \in L^1(\mathbb{R}^n) : \text{gradient } Du \text{ is finite measure on } \mathbb{R}^n \right\}$$

and $$u \equiv 0 \text{ a.e. on } \mathbb{R}^n \setminus \Omega$$

(contains $$W_{1,1}^{1,1}(\Omega)$$, but also $$u$$ with jumps along hypersurfaces in $$\Omega$$).

Generalized obstacle problem: Minimize the total mass of $$Du$$

$$|Du|(\Omega) = |Du|(\Omega) + |Du|(\partial \Omega) \approx ||\text{int trace}(u)||_{L^1(\partial \Omega)}$$

among

$$u \in BV_0(\Omega) \quad \text{with } u \geq \psi \text{ a.e. on } \Omega.$$
Existence and duality for $W^{1,1}$ obstacles

Basic results:

- The generalized TV obstacle problem has a minimizer.
Existence and duality for $W^{1,1}$ obstacles

Basic results:

- The generalized TV obstacle problem has a minimizer.

- For $\partial \Omega$ Lipschitz, $\psi \in W^{1,1}_0(\Omega)$, one has the duality formula

\[
\min \{ |Du|(\Omega) : u \in BV_0(\Omega), u \geq \psi \text{ a.e. on } \Omega \}
= \max \left\{ \int_\Omega \sigma \cdot \nabla \psi \, dx : \sigma \in S^\infty(\Omega, \mathbb{R}^n), \text{div} \sigma \leq 0 \text{ in } \mathcal{D}'(\Omega) \right\}.
\]

\text{sub-unit vector fields}
Existence and duality for $W^{1,1}$ obstacles

Basic results:

- The generalized TV obstacle problem has a minimizer.
- For $\partial \Omega$ Lipschitz, $\psi \in W^{1,1}_{0}(\Omega)$, one has the duality formula

$$
\min\{|D\!u|(\bar{\Omega}) : u \in BV_{0}(\bar{\Omega}), u \geq \psi \text{ a.e. on } \Omega\} = \max \left\{ \int_{\Omega} \sigma \cdot \nabla \psi \, dx : \sigma \in S^{\infty}(\Omega, \mathbb{R}^{n}), \text{div} \sigma \leq 0 \text{ in } D'(\Omega) \right\}.
$$

\leadsto to say more, need products $\sigma \cdot D\!\psi$ and $\sigma \cdot D\!u$ if merely $\psi, u \in BV$ (e.g. if ψ is a characteristic function).
The Anzellotti pairing

Consider:

- \(u \in BV_{loc}(\Omega) \),
- a vector field \(\sigma \in L^\infty_{loc}(\Omega, \mathbb{R}^n) \) (w.r.t. Lebesgue measure \(dx \)).

Can one define a product \([\sigma, Du] \)?
The Anzellotti pairing

Consider:
- \(u \in \text{BV}_{\text{loc}}(\Omega) \),
- a vector field \(\sigma \in L^\infty_{\text{loc}}(\Omega, \mathbb{R}^n) \) (w.r.t. Lebesgue measure \(dx \)).

Can one define a product \(\llbracket \sigma, Du \rrbracket \)? If \(\text{div} \sigma \) is suitably good, yes:

Definition (Kohn & Temam '82/’83, Anzellotti ‘83, . . .)

For \(u, \sigma \) as above, the distribution

\[
\llbracket \sigma, Du \rrbracket := \text{div}(\sigma u) - u \text{div} \sigma \in \mathcal{D}'(\Omega).
\]

makes sense (and behaves reasonably) if . . .
- . . . either \(u \in L^\infty_{\text{loc}}(\Omega) \), \(\text{div} \sigma \in L^1_{\text{loc}}(\Omega) \)
- . . . or \(\text{div} \sigma \in L^n_{\text{loc}}(\Omega) \) (*then uses Sobolev’s embedding*).
A pairing for divergence-measure fields

But even if $\text{div} \, \sigma \notin L^1_{\text{loc}}(\Omega)$, we still have:

Definition (a new Anzellotti type pairing, Scheven & S.)

For $u \in BV_{\text{loc}}(\Omega) \cap L^\infty_{\text{loc}}(\Omega)$ and $\sigma \in L^\infty_{\text{loc}}(\Omega, \mathbb{R}^n)$ such that $\text{div} \, \sigma$ is Radon measure (in particular if $\text{div} \, \sigma \leq 0$ in $\mathcal{D}'(\Omega)$), we define

$$[\sigma, Du^+] := \text{div}(\sigma u) - u^+ \text{div} \, \sigma \in \mathcal{D}'(\Omega).$$
A pairing for divergence-measure fields

But even if $\text{div} \, \sigma \notin L^1_{\text{loc}}(\Omega)$, we still have:

Definition (a new Anzellotti type pairing, Scheven & S.)

For $u \in \text{BV}_{\text{loc}}(\Omega) \cap L^\infty_{\text{loc}}(\Omega)$ and $\sigma \in L^\infty_{\text{loc}}(\Omega, \mathbb{R}^n)$ such that $\text{div} \, \sigma$ is Radon measure (in particular if $\text{div} \, \sigma \leq 0$ in $\mathcal{D}'(\Omega)$), we define

$$[\sigma, D u^+] := \text{div}(\sigma u) - u^+ \text{div} \, \sigma \in \mathcal{D}'(\Omega).$$

- makes sense because
 - $\text{div} \, \sigma$ vanishes on \mathcal{H}^{n-1}-negligible sets (Chen & Frid ’99),
 - u has \mathcal{H}^{n-1}-a.e. defined representatives u^\pm s.t., for \mathcal{H}^{n-1}-a.e. x,
 - either $u^+(x) = u^-(x)$ is the Lebesgue value of u at x
 - or $u^-(x) < u^+(x)$ are the approximate jump values of u at x.
- pairing $[\sigma, D u^*]$ with representative $u^* := \frac{u^+ + u^-}{2}$ already used by Mercaldo & Segura de León & Trombetti ‘09.
Properties of the pairing

Theorem (properties of $[\sigma, Du^+]$, Scheven & S.)

For $u \in BV_{\text{loc}}(\Omega)$ and $\sigma \in L^\infty(\Omega, \mathbb{R}^n)$ with $\text{div} \, \sigma \leq 0$ in $\mathcal{D}'(\Omega)$,

- $[\sigma, Du^+]$ is a Radon measure with product estimate
 \[||[\sigma, Du^+]| \leq ||\sigma||_{L^\infty(\Omega, \mathbb{R}^n)}|Du| \quad \text{on } \Omega, \]

- and its absolutely continuous part is the pointwise product, i.e.
 \[[\sigma, Du^+]^a = (\sigma \cdot \nabla^a u)dx \quad \text{on } \Omega. \]

- In particular, $[\sigma, Du^+] = (\sigma \cdot \nabla u)dx$ trivializes for $u \in W^{1,1}_{\text{loc}}(\Omega)$.
Properties of the pairing

Theorem (properties of $[\sigma, Du^+]$, Scheven & S.)

For $u \in BV_{loc}(\Omega)$ and $\sigma \in L^\infty(\Omega, \mathbb{R}^n)$ with $\text{div } \sigma \leq 0$ in $\mathcal{D}'(\Omega)$,

1. $[\sigma, Du^+]$ is a Radon measure with product estimate
 \[|[\sigma, Du^+]| \leq ||\sigma||_{L^\infty(\Omega, \mathbb{R}^n)} |Du| \quad \text{on } \Omega, \]
2. and its absolutely continuous part is the pointwise product, i.e.
 \[[\sigma, Du^+]^a = (\sigma \cdot \nabla^a u)dx \quad \text{on } \Omega. \]

- In particular, $[\sigma, Du^+] = (\sigma \cdot \nabla u)dx$ trivializes for $u \in W^{1,1}_{loc}(\Omega)$.
- Proofs based on fine (semi)continuity and capacity methods (e.g., since u^+ is not the limit of standard mollifications, need one-sided approximations of Carriero-Dal Maso-Leaci-Pascali ‘88).
Properties of the pairing

Theorem (properties of $[\sigma, Du^+]$, Scheven & S.)

For $u \in BV_{\text{loc}}(\Omega)$ and $\sigma \in L^\infty(\Omega, \mathbb{R}^n)$ with $\text{div} \sigma \leq 0$ in $\mathcal{D}'(\Omega)$,

- $[\sigma, Du^+]$ is a Radon measure with product estimate
 $$|[[\sigma, Du^+]]| \leq \|\sigma\|_{L^\infty(\Omega, \mathbb{R}^n)}|Du| \quad \text{on } \Omega,$$

- and its absolutely continuous part is the pointwise product, i.e.
 $$[\sigma, Du^+]^a = (\sigma \cdot \nabla u^a)dx \quad \text{on } \Omega.$$

- In particular, $[\sigma, Du^+] = (\sigma \cdot \nabla u)dx$ trivializes for $u \in W^{1,1}_{\text{loc}}(\Omega)$.

- Proofs based on fine (semi)continuity and capacity methods (e.g., since u^+ is not the limit of standard mollifications, need one-sided approximations of Carrero-Dal Maso-Leaci-Pascali ’88).

- Up-to-the-boundary pairing $[\sigma, Du^+]_0$ on $\overline{\Omega}$ accounts for zero Dirichlet datum (on mildly regular $\partial \Omega$; cf. S. ‘15, Beck & S. ‘15).
Duality for BV obstacles

Theorem (duality for the TV obstacle problem, Scheven & S.)

For mildly regular $\partial \Omega$, $\psi \in BV_0(\overline{\Omega}) \cap L^\infty(\Omega)$ with $|D\psi|(\partial \Omega) = 0$:

$$\min \{ |Du|(\overline{\Omega}) : u \in BV_0(\overline{\Omega}), u \geq \psi \text{ a.e. on } \Omega \}$$

$$= \max \{ [\sigma, D\psi^+](\Omega) : \sigma \in S^\infty(\Omega, \mathbb{R}^n), \text{div } \sigma \leq 0 \text{ in } \mathcal{D}'(\Omega) \}.$$
Duality for BV obstacles

Theorem (duality for the TV obstacle problem, Scheven & S.)

For mildly regular $\partial \Omega$, $\psi \in BV_0(\Omega) \cap L^\infty(\Omega)$ with $|D\psi|(\partial \Omega) = 0$:

$$\min \{ |D u|(\Omega) : u \in BV_0(\Omega), u \geq \psi \text{ a.e. on } \Omega \}$$

$$= \max \{ [\sigma, D\psi^+](\Omega) : \sigma \in S^\infty(\Omega, \mathbb{R}^n), \text{div } \sigma \leq 0 \text{ in } D'(\Omega) \}.$$

Two methods of proof (both rely on the properties of the pairing):

- Either look at obstacle problems for the p-Laplace in $W^{1,p}_0$ and pass $p \downarrow 1$ (this way, if $\psi \in W^{1,1+\varepsilon}_0$, also get a convergence result for minimizers when $p \downarrow 1$),
Theorem (duality for the TV obstacle problem, Scheven & S.)

For mildly regular $\partial \Omega$, $\psi \in BV_0(\Omega) \cap L^\infty(\Omega)$ with $|D\psi|(\partial \Omega) = 0$:

$$\min \{|Du|(\Omega) : u \in BV_0(\Omega), u \geq \psi \text{ a.e. on } \Omega\} = \max \{\langle [\sigma, D\psi^+] \rangle(\Omega) : \sigma \in S^\infty(\Omega, \mathbb{R}^n), \operatorname{div} \sigma \leq 0 \text{ in } D'(\Omega)\}. $$

Two methods of proof (both rely on the properties of the pairing):

- Either look at obstacle problems for the p-Laplace in $W^{1,p}_0$ and pass $p \downarrow 1$ (this way, if $\psi \in W^{1,1+\varepsilon}_0$, also get a convergence result for minimizers when $p \downarrow 1$),
- or deduce it from (abstract) convex duality.
Heuristically, minimizers u should satisfy
\[\text{div} \frac{\nabla u}{|\nabla u|} \leq 0, \]
and we can now make this precise:

Corollary (optimality conditions for the TV obstacle problem)

Every minimizer $u \in BV_0(\Omega)$ is super-1-harmonic on Ω in the sense that there exists some $\sigma \in S^\infty(\Omega, \mathbb{R}^n)$ with

\[
[\sigma, Du^+]_0 = |Du| \text{ on } \overline{\Omega} \quad \text{and} \quad \text{div } \sigma \leq 0 \text{ in } \mathcal{D}'(\Omega).
\]

BV-way of saying $\sigma = \frac{\nabla u}{|\nabla u|}$
BV optimality conditions

Heuristically, minimizers \(u \) should satisfy

\[
\text{div} \frac{\nabla u}{|\nabla u|} \leq 0,
\]

and we can now make this precise:

Corollary (optimality conditions for the TV obstacle problem)

Every minimizer \(u \in BV_0(\Omega) \) is super-1-harmonic on \(\Omega \) in the sense that there exists some \(\sigma \in S^\infty(\Omega, \mathbb{R}^n) \) with

\[
\left\{ \begin{array}{c}
\left[\sigma, Du^+ \right]_0 = \left| Du \right| \text{ on } \overline{\Omega} \\
\text{BV-way of saying } \sigma = \frac{\nabla u}{|\nabla u|}
\end{array} \right.
\]

and \(\text{div } \sigma \leq 0 \text{ in } \mathcal{D}'(\Omega) \).

Moreover, \(u \) is 1-harmonic away from the obstacle in the sense of

\[
\text{div } \sigma \equiv 0 \text{ on } \Omega \cap \{ u^+ > \psi^+ \}.
\]
Extensions

We can also treat . . .

- (much) more general obstacles:
 - thin and, most generally, quasi upper semicontinuous obstacles (then need additional tools: relaxation, De Giorgi’s measure, . . .),
 - obstacles which are positive up to \(\partial \Omega \) (then need modified pairing),
Extensions

We can also treat . . .

- (much) more general obstacles:
 - thin and, most generally, quasi upper semicontinuous obstacles (then need additional tools: relaxation, De Giorgi’s measure, . . .),
 - obstacles which are positive up to \(\partial \Omega\) (then need modified pairing),

- the non-parametric area \(\int_{\Omega} \sqrt{1+|\nabla u|^2} \, dx\) and similar functionals,
Extensions

We can also treat ...

- (much) more general obstacles:
 - thin and, most generally, quasi upper semicontinuous obstacles (then need additional tools: relaxation, De Giorgi’s measure, ...),
 - obstacles which are positive up to $\partial \Omega$ (then need modified pairing),

- the non-parametric area $\int_\Omega \sqrt{1+|\nabla u|^2} \, dx$ and similar functionals,

- general boundary values.
Related topics

Related work in progress concerns . . .

- **BV supersolutions** to 1-Laplace and minimal surface equations, in particular:
 - compactness results,
 - the question if simultaneous super- and sub-solutions are solutions (for the 1-Laplace surprisingly non-trivial, since σ is not unique \rightsquigarrow duality argument of possible interest; cf. Yan ‘11),
Related topics

Related work in progress concerns . . .

- **BV supersolutions** to 1-Laplace and minimal surface equations, in particular:
 - compactness results,
 - the question if simultaneous super- and sub-solutions are solutions (for the 1-Laplace surprisingly non-trivial, since σ is not unique \leadsto duality argument of possible interest; cf. Yan ‘11),

- variational **existence results for measure data problems** to the 1-Laplace equation and the prescribed mean curvature equation (parametric or non-parametric; in the last case yields an alternative to the approach of Dai & Trudinger & Wang ‘12).