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Observation of wave equation

Let T > 0, L > 0 and ω ⊂ (0, L), measurable.

∂ttϕ(t, x)− ∂xxϕ(t, x) + a(x)ϕ(t, x) = 0, (t, x) ∈ (0,T )× (0, L),
ϕ(t, 0) = ϕ(t, π) = 0, t ∈ [0,T ],
ϕ(0, x) = ϕ0(x), ∂tϕ(0, x) = ϕ1(x), x ∈ [0, L],

(Eq-wave)
where the potential a(·) ∈ L∞(0, L) is non-negative.

Definition

The equation (Eq-wave) is said to be observable on ω in time T if there
exists a positive constant C such that

C

∫ π

0

(
ϕ1(x)2 + ϕ′0(x)2 + a(x)ϕ0(x)2

)
dx ≤

∫ T

0

∫

ω

∂tϕ(t, x)2 dxdt,

(Obs-wave)
for all (ϕ0, ϕ1) ∈ H1

0 (0, π)× L2(0, π).

We denote by CT ,obs(ω) the largest constant in the previous inequality
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Let L > 0. Let a(·) ∈ L∞(0, L) such that a ≥ 0 a.e. We consider the
operator

Aa := −∂xx + a(·) Id

defined on D(Aa) = H1
0 (0, L) ∩ H2(0, L). Let us denoted by ea,j ∈ D(Aa)

a Hilbert basis of eigenfunctions in L2(0, L), such that ea,j solves the
eigenvalue problem





−e′′a,j(x) + a(x)ea,j(x) = λ2
a,jea,j(x), x ∈ (0, L),

ea,j(0) = 0,

ea,j(L) = 0.

(Pb-vp)

We choose
∫ L

0
e2
a,j(x)dx = 1.
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Theorem

We have

CT ,obs(ω) ∼ T inf
j∈N∗

∫

ω

ea,j(x)2dx , as T →∞

There exists T1 > 0 such that for all T > T1,

CT ,obs(ω) ≥ K (T ) inf
j∈N∗

∫

ω

ea,j(x)2 dx > 0,

with K (T ) > 0.
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Let M > 0. We introduce

AM = {a ∈ L∞(0, L) such that 0 ≤ a ≤ M a.e. on (0, L)} ,

Problem 1 : (L∞-constraint on a)

inf
a∈AM

inf
ω⊂(0,L)

s.t. |ω|=rL

inf
j∈N∗

∫

ω

ea,j(x)2 dx , (Pb-AM)
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Remarks (when we fix j)

If we do not restrict our search to those subsets ω verifying |ω| = rL,
the problem is trivial.

If we fix the potential a, it is well known that there exists τ ∈ R+

such that

inf
ω⊂(0,L)

s.t. |ω|=rL

∫

ω

ea,j(x)2 dx =

∫

ω∗
ea,j(x)2 dx ,

where ω∗ = {ea∗,j(x)2 < τ} up to a set of zero Lebesgue measure.

If a = 0 and L = π, so e0,j(x) = sin(jx). We have the following
inequality

∫

ω

sin(jx)2 dx ≥ |ω| − sin |ω|
2

, for every measurable ω.
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Theorem

Let r ∈ (0, 1) and M ∈ R∗+.

1 Problem (Pb-AM) has a solution (j0, ω
∗, a∗). In particular, there

holds

m(L, r) = min
a∈AM (0,L)

min
ω∈Ωr (0,L)

∫

ω

ea,j0 (x)2 dx ,

and the solution a∗ of Problem (Pb-AM) is bang-bang, equal to 0 or
M a.e. in (0, L).

2 Assume that M = π2/L2. Then, ω∗ is the union of j0 + 1 intervals,
and a∗ has at most 3j0 − 1 and at least j0 switching points
Moreover, one has the estimate

γr 3 ≤ m(L, r) ≤ r − sin(πr)

π
, (1)

with γ = 7
√

3
8 (3− 2

√
2) ' 0.2600.
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Let r ∈ (0, 1) and M ∈ (0, π2/L2]. There holds

mj(L, r) := inf
a∈AM (0,L)

inf
ω∈Ωr (0,L)

∫

ω

ea,j(x)2 dx ≥ mj ,

for every j ∈ N∗, where the sequence (mj)j∈N∗ is defined by

mj =





1
2 if j = 1,

(2j2−1)(j2−1)
3
2

(√
j2

j2−2
−1

)2

3j3

((
j2

j2−2

) j
2−1

)2 if j ≥ 2.

Thibault Liard, Pierre Lissy, Yannick Privat Study of an extremal problem for eigenvectors of some Sturm-Liouville problems



Motivation
Presentation of the Problem

Some ideas on the proofs
Conclusion

Introduction
Main results

What about the L∞ constraint

The constraint of the L∞-norm is mandatory, in the following meaning :

Theorem

Let r ∈ (0, 1), j ∈ N∗ and V > 0. The optimal design problem

inf
a∈A∞

inf
ω⊂(0,L)

s.t. |ω|=rL

∫

ω

ea,j(x)2 dx , (PbInf)

where A∞ = ∪M>0AM , has no solution.
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In the case : j = 1
Since the eigenfunction ea,1 is normalized in L2(0, L), there holds

e2
a,1(xmax) ≥ 3

2L
. (2)

Since ea,1 is concave one has the successive inequalities

ea,1(x) ≥ Tra,1(x) ≥ 41(x), (3)

for every x ∈ [0, L].

Lα∗ β∗

(1− r)L

xmax

ea,1(xmax)

√
3
2L

0

41

Tra,1

Figure : Graphs of the functions ea,1, Tra,1 and 41.
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We readily obtain

inf
ω∈Ωr (0,L)

∫

ω

ea,1(x)2 dx ≥ inf
ω∈Ωr (0,L)

∫

ω

41(x)2dx =

∫

ω̂

41(x)2dx , (4)

with ω̂ = (0, α∗) ∪ (β∗, L) verifying

41(α∗) = 41(β∗) and |ω∗| = L− β∗ + α∗ = rL.

one computes ∫

ω̂

41(x)2 dx =
r 3

2
. (5)
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In the general case
Let 0 = x0

j < x1
j < x2

j < L = x3
3 be the 4 zeros of the 3-th eigenfunction

ea,3.
First step : for every i ∈ {1, 2, 3}, there exist Ai > 0 such that
ea,j(x i

max) = maxx∈Ωi ea,j(x) ≥
√

Ai .
Second step :

ea,1(x
1
max)

ea,1(x
2
max)

ea,1(x
3
max)

x0
3

x1
3 x2

3

√
A0

−
√
|A1|

√
A2

∆j

L

Figure : Graphs of the functions ea,1 and 4j .
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Figure : L = π and M = 1. Left : plots of the optimal set ω(−), a(-) and
e2
a,1 (. . . ) with respect to the space variable with r = 0.3. Right : plot of

r 7→ m1(L, r) (−), r 7→ r − sin(πr)
π

(-) and r 7→ r 3/2 (· · · ).
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Figure : L = π and M = 1. Plots of mj(π,r) for j = 1(o), j = 2(- -) and
j = 6 with respect to r .
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Thank you for you attention
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