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Traditionally, the resistance of water to the motion of a ship is
represented as

Rwater = Rwave + Rviscous ,

with
Rviscous = Rfrictional + Reddy .
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Consider a ship moving with constant velocity U on the surface of
an unbounded fluid.

coordinates xyz are fixed to the ship

the xy -plane is the water surface, z is vertically downward

The (half-)immerged hull surface is represented by a continuous
nonnegative function

y = f (x , z) ≥ 0, x ∈ [−L/2, L/2], z ∈ [0,T ],

where L is the length and T is the draft of the ship. We also
assume

f (±L/2, z) = 0 ∀z and f (x ,T ) = 0 ∀x .
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Example: for a Wigley hull with beam B , we have
f (x , z) = (B/2)S(z)(1− 4x2/L2) with

S(z) =











1− (z/T )2 (parabolic cross section)

1− z/T (triangular cross section)

1 (rectangular cross section).
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Michell’s formula (1898) reads:

RMichell =
4ρg2

πU2

∫

∞

1

(I (λ)2 + J(λ)2)
λ2

√
λ2 − 1

dλ, (1)

with

I (λ) =

∫ L/2

−L/2

∫ T

0

∂f (x , z)

∂x
exp

(

−λ2gz

U2

)

cos

(

λgx

U2

)

dxdz , (2)

J(λ) =

∫ L/2

−L/2

∫ T

0

∂f (x , z)

∂x
exp

(

−λ2gz

U2

)

sin

(

λgx

U2

)

dxdz . (3)

Morgan PIERRE Optimal ship forms



Michell’s wave resistance formula
Formulation of the optimization problem

Theoretical results
Numerical results

About the case ǫ = 0
Conclusion and perspectives

U (in m · s−1) is the speed of the ship

ρ (in kg ·m−3) is the (constant) density of the fluid

g (in m · s−2) is the standard gravity.

RMichell has the dimension of a force. λ has no dimension and
λ = 1/ cos θ where θ is the angle at which the wave is propagating.

Morgan PIERRE Optimal ship forms



Michell’s wave resistance formula
Formulation of the optimization problem

Theoretical results
Numerical results

About the case ǫ = 0
Conclusion and perspectives

The fluid is incompressible, inviscid, the flow is irrotational

A steady state has been reached

Linearized theory (flow potential with linearized boundary
conditions)

Thin ship assumptions: |∂x f | << 1, |∂z f | << 1.

Experiments starting in the 1920’s (Wigley, Weinblum):
reasonable good agreement between theory and experiment
(Gotman’02). Typical values for Wigley: L/B ≈ 10 and
T/B = 1.5.

The following figures represent the wave coefficient
CW = 2Rwave/(ρU

2A) (with A the wetted surface of the hull) in
terms of the Froude number F = U/

√
gL.
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Comparison Michell and experimental data (Weinblum’52)
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Comparison Michell and experimental data (parabolic Wigley model, Bai’79)
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Derivation of Michell’s formula (sketch)

In the coordinates xyz fixed to the ship, we have Ū = −U + u,
where u is the perturbed velocity flow. We seek a potential flow Φ
(i.e. with u = ∇Φ), even with respect to y , which satisfies in
D = Rx × (R+)y × (R+)z :

∆Φ = 0 in D (4)

∂xxΦ− (g/U2)∂zΦ = 0, z = 0 (5)

∂yΦ = −Ufx , y = 0+ (6)

∇Φ → 0 as x → +∞. (7)

Φ can be computed explicitly by means of Green functions and
Fourier transform.
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Let Ω = (−L/2, L/2)× (0,T ). Then the wave resistance reads

Rwave = −2

∫

Ω

δpfx(x , z)dxdz ,

where δp is the difference of pressure due to the ship. (Notice that
Rwave is the drag force in this linearized model).
From Φ, we derive δp so that

Rwave = −2ρU

∫

Ω

Φx(x , 0, z)fx(x , z)dxdz .

Computing, we obtain Rwave = RMichell as given by (1).
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Formulation of the optimization problem

1st idea: finding a ship of minimal wave resistance among
admissible functions f : Ω → R+, for a constant speed U and a
given volume V of the hull.
f 7→ RMichell(f ) is a positive semi-definite quadratic functional, but
the problem above is ill-posed (Sretensky’35, Krein’52). In
particular, it is underdetermined.

Most authors proposed to add conditions and/or to work in finite
dimension (Weinblum’56, Kostyukov’68,. . . )
Another approach, that we chose: add a regularizing term which
represents the viscous resistance (Lian-en’84, Michalski et al’87)
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We define

v = g/U2 > 0 and Tf (v , λ) = I (λ)− iJ(λ),

where I and J are given by (2)-(3). Then

Tf (v , λ) =

∫ L/2

−L/2

∫ T

0

∂x f (x , z)e
−λ2vze−iλvxdxdz , (8)

and RMichell can be written

R(v , f ) =
4ρgv

π

∫

∞

1

|Tf (v , λ)|2
λ2

√
λ2 − 1

dλ. (9)
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For the numerical computation, we let Λ >> 1 and consider

RΛ(v , f ) =
4ρgv

π

∫ Λ

1

|Tf (v , λ)|2 dµ(λ), (10)

where µ is a nonnegative and finite borelian measure on [1,Λ].
Typically,

dµ(λ) =
λ2

√
λ2 − 1

dλ,

or a numerical integration of this weight.
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For the viscous resistance, we propose

Rviscous =
1

2
ρU2CvdA,

where Cvd is the (constant) viscous drag coefficient, and A is the
wetted surface area given by

A = 2

∫

Ω

√

1 + |∇f (x , z)|2 dxdz .

For instance, the ITTC 1957 model-ship correlation line gives

Cvd = 0.075/(log10(Re)− 2)2,

where Re = UL/ν is the Reynolds number and ν the kinematic
viscosity of water.
For small ∇f (thin ship assumption)

Rviscous ≈ ρU2 Cvd

(
∫

Ω

dxdz +
1

2

∫

Ω

|∇f (x , z)|2 dxdz
)

.
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By setting

ǫ =
1

2
ρU2 Cvd , (11)

and dropping the constant term, we obtain

R∗

viscous = ǫ

∫

Ω

|∇f (x , z)|2 dxdz .

The total water resistance functional NΛ,ǫ(v , ·) is

NΛ,ǫ(v , f ) := RΛ(v , f ) + ǫ

∫

Ω

|∇f (x , z)|2dxdz .
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The function space is

H =
{

f ∈ H1(Ω) : f (±L/2, ·) = 0 and f (·,T ) = 0 a.e.
}

,

Let V > 0 be the (half-)volume of an immerged hull. The set of
admissible functions is

CV =

{

f ∈ H :

∫

Ω

f (x , z)dxdz = V and f ≥ 0 a.e. in Ω

}

.

Notice that CV is a closed convex subset of H.
NB: the volume is proportional to the displacement of the ship.
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The optimization problem

Our optimization problem PΛ,ǫ reads: for a given Kelvin wave
number v and for a given volume V > 0, find the function f ⋆

which minimizes the total resistance NΛ,ǫ(v , f ) among functions
f ∈ CV .
Recall that

NΛ,ǫ(v , f ) := RΛ(v , f ) + ǫ

∫

Ω

|∇f (x , z)|2dxdz

and
v = g/U2.

In short, “minimize the (total) drag for a given displacement”.
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Well-posedness

The parameters ρ > 0, g > 0, V > 0, Λ > 0, v > 0 and ǫ > 0 are
fixed (unless otherwise stated).

Theorem (Dambrine, P. & Rousseaux (to appear))

Problem PΛ,ǫ has a unique solution f ǫ,v ∈ CV . Moreover, f ǫ,v is

even with respect to x.

Existence by a minimizing sequence

Uniqueness by strict convexity

Symmetry thanks to the symmetry of RMichell through
x 7→ −x .

Remark: also valid if Λ = ∞ with RMichell instead of RΛ.
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Continuity of the optimum with respect to v

Theorem (Dambrine, P. & Rousseaux (to appear))

Let v̄ > 0. Then f ǫ,v converges strongly in H to f ǫ,v̄ as v → v̄ .

idea of proof

NΛ,ǫ(v , ·) Γ-converges to NΛ,ǫ(v̄ , ·) for the weak topology in
H, thanks to Λ < ∞.

strong convergence thanks to the convergence of the H1-norm

Remark: result also valid if ǫ > 0 depends continuously on v .
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Regularity of the solution

Theorem (Dambrine, P. & Rousseaux (to appear))

The solution f ǫ,v of problem PΛ,ǫ belongs to W 2,p(Ω) for all
1 ≤ p < ∞. In particular, f ǫ,v ∈ C 1(Ω).
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Sketch of proof (regularity)

The problem is a perturbation of an obstacle-type problem for the
Dirichlet energy

The Euler-Lagrange equation gives a variational inequality for
an obstacle-type problem

By a standard result, the regularity of the obstacle problem is
given by the regularity of unconstrained problem

The unconstrained problem reads −∆f ǫ,v = w with
w ∈ L∞(Ω), and homogeneous Dirichlet BC on 3 sides +
no-flux BC on 1 side of the rectangle, hence f ǫ,v ∈ W 2,p(Ω)
for all 1 ≤ p < ∞.
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Numerical methods

Q1 finite element discretization of the space H

the integrals

J(λ) =

∫ L/2

−L/2

∫ T

0

∂f (x , z)

∂x
exp

(

−λ2gz

U2

)

sin

(

λgx

U2

)

dxdz .

(12)
are computed exactly on the basis functions

the antisymmetric contribution I (λ) is dropped (since the
minimizer is even with respect to x).

for the last integral RMichell , we use a midpoint formula which
preserves nonnegativity of the quadratic form + Tarafder’s
trick to improve accuracy

Uzawa algorithm for the resolution
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Numerical test

ρ = 1000 kg ·m−3, g = 9.81m · s−2, L = 2m, T = 20 cm,
V = 0.03m3.

Nx = 100 and Nz = 20

ǫ = 1
2
ρCvdU

2 with Cvd = 0.01

Fr = U/
√
gL
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Scaling

Let T = αT̄ / L = αL̄ / f = αf̄ / x = αx̄ / z = αz̄
The wave resistance reads

R(v , f ) = α3R̄(αv , f̄ ),

where v = g/U2. It is natural to set v̄ = αv , i.e. U =
√
αŪ, and

with this choice,

Fr = U/
√

gL = F̄r = Ū/

√

gL̄.

The viscous drag reads

1

2
ρU2Cvd

∫

Ω

|∇f (x , z)|2dxdz = α3 1

2
ρŪ2Cvd

∫

Ω̄

|∇f̄ (x̄ , z̄)|2dx̄dz̄ .
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The bulbous bow of “Harmony of the Seas” (AFP / G. Gobet photo)
Speed : 20 knots / Length : 362m / Fr=0.17 (/T=9.1m / B=47m)

ITTC 1957 gives Cvd = 0.0013
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About the case ǫ = 0

In this section, we assume

RΛ(v , f ) =
4ρgv

π

∫ Λ

1

|Tf (v , λ)|2
λ2

√
λ2 − 1

dλ,

with 1 < Λ ≤ ∞ (i.e. “true” Michell wave resistance, or truncated
Michell wave resistance).

Proposition (Krein’52)

Let v > 0. For all f ∈ CV , R
Λ(v , f ) > 0. More precisely,

inf
f ∈CV

RΛ(v , f ) > 0.

⇒ There is no ship with wave resistance equal to 0.
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However, this is possible if L = ∞ (endless caravan of ships).
Indeed, choose

f (x , z) = g(x)h(z), g(x) =
sin2(ax)

ax2

and h arbitrary. Then for v < a, Tf (v , λ) = 0 for all λ ≥ 1 and so
RΛ(v , f ) = 0.

Moreover, if L < ∞ , for any h ∈ C∞

c (Ω), by setting
f = ∂2

xh + v∂zh, we have by integration by parts:

Tf (v , λ) = iλv

∫ L/2

−L/2

∫ T

0

f (x , z)e−λ2vze−iλvxdxdz = 0,

and so
RΛ(v , f ) = 0.

(but in this case, f changes sign !)
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Letting ǫ → 0

Proposition (Dambrine, P. & Rousseaux (to appear))

The minimum value NΛ,ǫ(v , f ǫ,v ) tends to

mΛ,v := inf
f ∈CV

RΛ(v , f )

as ǫ tends to 0.

Remark: Up to a subsequence, f ǫ,v tends to a finite nonnegative
measure with support in Ω, weakly-⋆ in (C (Ω))′.
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The one dimensional case

For simplicity, we restrict the study to the functions f (x , z) = f (x)
with infinite draft T . Moreover, f (±L/2) = 0 and by symmetry, f
is even. Then (for Λ = ∞),

RMichell =
4ρgv

π

∫

∞

1

Sf (v , λ)
2 1√

λ2 − 1
dλ

with

Sf (v , λ) =

∫ L/2

−L/2
f (x) cos(λvx)dx . (13)

We minimize RMichell in

CV := {f ∈ H1
0 (−L/2, L/2) : f even,

∫ L/2

−L/2
f = V , f ≥ 0 a.e.}.
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Proposition (1d case)

Any minimizing sequence (fn) converges to the same finite

nonnegative measure µv on [−L/2, L/2]. Moreover, µv belongs to

H−1/2(−L/2, L/2).

Uniqueness: Sf is the Fourier transform of f , so by analycity,
RMichell is a norm on L2(−L/2, L/2), which has a natural l.s.c.
extension to a norm on (C ([−L/2, L/2])′.
Estimate: use Fatou’s lemma and the standard definition of
H−1/2(R) by Fourier transform. Indeed,

H−1/2(R) := {g ∈ S ′(R) :

∫

R
(1 + λ2)−1/2|ĝ(λ)|2dλ < ∞}.
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Solution for ǫ = 1, ǫ = 0.05 and ǫ = 0.01 (Fr = 0.4)
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1d Resolution without positivity condition (Krein’52)

If we suppress the positivity condition, then the minimization
problem is quadratic with linear constraint. The Euler-Lagrange
equation reads: find f : I → R s.t.

∫

I

Kv (x − ξ)f (ξ)dξ = cst, ∀x ∈ I , (14)

where I = (−L/2, L/2) and

Kv (x − ξ) =

∫

∞

1

cos(λv(x − ξ))√
λ2 − 1

dλ.

This is a Fredholm integral equation of the first kind. Well-known
category of ill-posed problems !
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We have
Kv (x) = cv ln(1/|x |) + g(x),

where g is continuously differentiable on I and twice continuously
differentiable on I \ {0}.
Keeping only the first term of Kv in (14), the solution is given by

f (x) =
C

√

(L/2)2 − x2
,

where C is a constant.
Singularity at x = ±L/2. In particular, f 6∈ H1(I ).
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A numerical experiment (1d)

Discretization of the Euler-Lagrange equation (14) by P1 finite
element in H1(−L/2, L/2), and its ǫ-regularized version (Tykhonov
regularization).
Fr = 0.4 (L = 3 / V = 0.1)
N = number of degrees of freedom
κ = condition number of the (augmented) linear system
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Condition number vs degrees of freedom (1d)
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Conclusion and perspectives

Other formulas
Michell assumes an unbounded domain, i.e. depth H = ∞ and
width W = ∞. There are also integral formulas for:

H = ∞ and W < ∞ (Sretensky’36)

H < ∞ and W = ∞ (Sretensky’37)

H < ∞ and W < ∞ (Sretensky’37 and Keldish-Sedov’37)

Multilayers (dead-water effects) . . .
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Wave resistance of a Wigley hull for 3 different domains
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Fixed speed U ⇒ range of speeds

fixed domain of parameters ⇒ varying domain (shape
optimization)

. . .
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Thank you for your attention !
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