# Jets at NNLO: status and use in PDF's

João Pires\* Universita degli Studi di Milano INFN sezione di Milano

15-21 February 2015 Benasque, Spain

#### Inclusive jet and dijet cross sections

□ look at the production of jets of hadrons with large transverse energy in

- $\square \quad \text{inclusive jet events} \qquad pp \to j + X$
- $\square$  exclusive dijet events  $pp \rightarrow 2j$

 $\Box$  cross sections measured as a function of the jet  $p_T$ , rapidity y and dijet invariant mass  $m_{jj}$  in double differential form

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T\mathrm{d}y} = \frac{1}{\epsilon\mathscr{L}_{\mathrm{eff}}} \frac{N_{\mathrm{jets}}}{\Delta p_T \left(2\cdot\Delta|y|\right)}$$



#### Inclusive jet cross section

 $\square$  Jets up to |y| = 3.0,  $p_T = 2.5$  TeV. Six rapidity bins of  $\Delta |y| = 0.5$ . @ 8TeV



#### □ theory: NLO QCD⊗NP

overall good agreement with data with similar predictions at low-pT

 $\square$  except ABM11  $\rightarrow$  not included jet data in their fit since NNLO corrections may be large

 $\square$  significant mismatch in the predictions at high- $p_T$  between all sets

 $\begin{array}{lll} \delta_{experimental} & \sim & 15-40\% & (\text{JES, luminosity, unfolding}) \\ & \delta_{theory} & \sim & 10-50\% & (\text{PDF, } \mu_R, \, \mu_F) \end{array}$ 

#### Dijet cross section

□ Jets up to |y| = 2.5,  $M_{jj} = 5.5$  TeV. Six rapidity bins of  $\Delta |y_{\text{max}}| = 0.5$ . @ 8TeV



- overall good agreement with data within statistical/systematical uncertainties in all rapidity bins
- □ theory predictions show differences of 𝒴(10%)
- theoretical and experimental uncertainties are of comparable size even at high M<sub>jj</sub>

 $\begin{array}{ll} \delta_{experimental} & \sim & 5-20\% \quad (\text{JES, luminosity, unfolding}) \\ \delta_{theory} & \sim & 5-40\% \quad (\text{PDF, } \mu_R, \, \mu_F) \end{array}$ 

## Towards NNLO QCD

#### Motivation for NNLO

- □ to include higher-order effects → only way to reduce theoretical uncertainties in the fixed-order predictions used in experimental analysis
- to make reliable theory comparisons with LHC jet data
- to make jet data consistently included in NNLO PDF fits

## Towards NNLO QCD

#### Motivation for NNLO

- □ to include higher-order effects → only way to reduce theoretical uncertainties in the fixed-order predictions used in experimental analysis
- to make reliable theory comparisons with LHC jet data
- to make jet data consistently included in NNLO PDF fits



- different data constrain different parton combinations at different x
- check NNLO consistency with HERA, DIS and Tevatron data
- $\square$  check consistency with  $t\bar{t}$  data

## Inclusive jet and dijet cross sections

#### State of the art:

 dijet production is known in NLO QCD [Ellis, Kunszt, Soper '92]
 [Giele, Glover, Kosower '94], [Nagy '02]

#### NLO+Parton shower [Alioli, Hamilton, Nason, Oleari, Re '11]

- NLO EW corrections
   [Dittmaier, Huss, Speckner '12]
- approximate NNLO threshold corrections [Kidonakis, Owens '00], [Florian, Hinderer, Mukherjee, Ringer, Vogelsang '13]



#### Goal:

obtain the jet cross sections at NNLO exact accuracy in double differential form

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T\mathrm{d}|y|} \qquad \frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{jj}\mathrm{d}y^*}$$

## **NNLO** ingredients

QCD jet cross section perturbative expansion at hadron colliders

$$\mathrm{d}\sigma = \sum_{i,j} \int \left[ \mathrm{d}\hat{\sigma}_{ij}^{LO} + \left(\frac{\alpha_s}{2\pi}\right) \mathrm{d}\hat{\sigma}_{ij}^{NLO} + \left(\frac{\alpha_s}{2\pi}\right)^2 \mathrm{d}\hat{\sigma}_{ij}^{NNLO} + \mathscr{O}(\alpha_s^3) \right] f_i(x_1) f_j(x_2) dx_1 dx_2$$

NNLO *m*-jet correction contains three contributions:



- explicit infrared poles from loop integrations
- implicit poles in phase space regions for single and double unresolved gluon emission
- procedure to extract the infrared singularities and assemble all the parts in a parton-level generator
- □ differential cross sections→ kinematics of the final state intact to apply arbitrary phase space observable cuts

## NNLO antenna subtraction

$$\begin{aligned} \mathrm{d}\hat{\sigma}_{NNLO} &= \int_{\mathrm{d}\Phi_4} \left( \mathrm{d}\hat{\sigma}_{NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{NNLO}^S \right) + \int_{\mathrm{d}\Phi_3} \left( \mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^T \right) \\ &+ \int_{\mathrm{d}\Phi_2} \left( \mathrm{d}\hat{\sigma}_{NNLO}^{VV} - \mathrm{d}\hat{\sigma}_{NNLO}^U \right) \end{aligned}$$

- extract singularities keeping the kinematics of the final state intact
- IR pole cancellation analytic and local in phase space





- double unresolved configurations
  - double soft
  - triple collinear
  - double collinear
  - single soft and single collinear
- remove overlapping of various single and double soft and/or collinear limits

- single unresolved configurations
  - single soft
  - single collinear

## leading- $N_F$ contributions at NNLO

| NNLO contributions          | perturbative order |                             |               |                           |
|-----------------------------|--------------------|-----------------------------|---------------|---------------------------|
| $gg \rightarrow q\bar{q}gg$ | tree-level (RR)    |                             |               |                           |
| $gg \rightarrow q\bar{q}g$  | one-loop (RV)      | $d\hat{\sigma}^{RR}_{NN}$   | $\rightarrow$ | $d\hat{\sigma}^{S}$       |
| gg  ightarrow ggg           | one-loop (RV)      | ao <sub>NNLO</sub>          | ,             |                           |
| $gg \rightarrow gg$         | two-loop (VV)      | $d\hat{\sigma}_{NNLO}^{nv}$ | $\rightarrow$ | $d\hat{\sigma}_{NNL}^{I}$ |
| $gg \to q\bar{q}$           | two-loop (VV)      |                             |               |                           |

- 27 independent double/single unresolved singularities at RR level, e.g.,
  - $\Box \quad \text{triple collinear final-state } P_{q\bar{q}g} \rightarrow g, P_{qgg} \rightarrow q$
  - $\square \text{ triple collinear initial-state } P_{\hat{g}q\bar{q}} \rightarrow \hat{g}, P_{\hat{g}qg} \rightarrow \hat{\bar{q}}, P_{\hat{g}gg} \rightarrow \hat{g}$
- NLO and NNLO antenna functions correctly approximate the matrix elements in all unresolved configurations



#### NNLO antenna subtraction - VV process

- □ VV antenna subtraction term IR pole structure [Currie, Glover, Wells 2013]
  - $\hfill\square$  integrated single unresolved emission from RV process  $\propto$  tree-level single soft function

$$\mathscr{P}oles(\mathrm{d}\hat{\sigma}_{NNLO}^{U,a}) \quad \sim \quad \mathbf{J^1}(\epsilon, \hat{1}_g, \hat{2}_g, i_g, j_g) \Big( A_4^1(\hat{1}_g, \hat{\hat{2}}_g, i_g, j_g) - \frac{b_0}{\epsilon} A_4^0(\hat{1}_g, \hat{\hat{2}}_g, i_g, j_g) \Big)$$

integrated iterated NLO emissions of RR process in analytic one-to-one correspondence with  $(I^1)^2$  operator of Catani

$$\mathscr{P}oles(\mathrm{d}\hat{\sigma}_{NNLO}^{U,b}) \quad \sim \quad \mathbf{J^1}(\epsilon, \hat{1}_g, \hat{2}_g, i_g, j_g) \otimes \mathbf{J^1}(\epsilon, \hat{1}_g, \hat{2}_g, i_g, j_g) A_4^0(\hat{\bar{1}}_g, \hat{\bar{2}}_g, i_g, j_g)$$

- $\hfill\square$  integrated double unresolved emission of RR process  $\propto$  tree-level double soft function
- $\square$  integrated single unresolved emission of RV process  $\propto$  one-loop single soft function
- $\hfill\square$  when added are in analytic one-to-one correspondence with  $\mathbf{I}^2$  operator of Catani

$$\mathscr{P}oles(\mathrm{d}\hat{\sigma}_{NNLO}^{U,c}) \quad \sim \quad \mathbf{J^2}(\epsilon, \hat{1}_g, \hat{2}_g, i_g, j_g) \, A^0_4(\hat{1}_g, \hat{2}_g, i_g, j_g)$$

□ double virtual antennae subtraction term  $d\hat{\sigma}_{NNLO}^U$  written compactly rederives the predicted Catani pole structure of the two-loop contribution in the antennae language

#### leading- $N_F$ VV contribution $gg \rightarrow gg$

all independent double/single unresolved singularities at RR, RV level, collapse to a simple structure once integrated down to the VV level

$$\begin{aligned} \mathrm{d}\sigma_U &= \hat{\mathbf{J}}_4^1(1_g, 2_g, i_g, j_g) A_4^1(1_g, 2_g, i_g, j_g) \\ &+ \mathbf{J}_4^1(1_g, 2_g, i_g, j_g) \hat{A}_4^1(1_g, 2_g, i_g, j_g) \\ &+ \mathbf{J}_4^1(1_g, 2_g, i_g, j_g) \otimes \hat{\mathbf{J}}_4^1(1_g, 2_g, i_g, j_g) A_4^0(1_g, 2_g, i_g, j_g) \\ &+ \hat{\mathbf{J}}_4^2(1_g, 2_g, i_g, j_g) A_4^0(1_g, 2_g, i_g, j_g) \end{aligned}$$

allowing us to define integrated dipoles (in one-to-one correspondence with IR-Catani pole operators) with an analytic expansion in  $d = 4 - 2\epsilon$  for all possible flavour combinations, e.g.,

$$\begin{split} \hat{\mathbf{J}}_{4}^{2}(1_{g},2_{g},i_{g},j_{g}) &= \hat{\mathbf{J}}_{2}^{2}(\hat{1}_{g},\hat{2}_{g}) + \hat{\mathbf{J}}_{2}^{2}(\hat{2}_{g},i_{g}) + \hat{\mathbf{J}}_{2}^{2}(i_{g},j_{g}) + \hat{\mathbf{J}}_{2}^{2}(j_{g},\hat{1}_{g}) \\ &\to \quad \text{leading-} N_{F} \text{ FF, IF, II gluon-gluon dipoles} \end{split}$$

$$\begin{split} \hat{\mathbf{J}}_{2}^{2}(\hat{\mathbf{1}}_{g},\hat{\mathbf{2}}_{g}) &= \mathscr{G}_{4,gg}^{0}(s_{12}) + \hat{\mathscr{F}}_{3}^{1}(s_{12}) + \frac{b_{F}}{\epsilon} \mathscr{F}_{3}^{0}(s_{12}) \left( \left( \frac{|s_{12}|}{\mu^{2}} \right)^{-\epsilon} - 1 \right) - \frac{1}{2} \bar{\Gamma}_{gg,F}^{2}(z_{1}) - \frac{1}{2} \bar{\Gamma}_{gg,F}^{2}(z_{2}) \\ &+ \frac{1}{2} \frac{b_{F}}{\epsilon} \Gamma_{gg}^{1}(z_{1}) + \frac{1}{2} \frac{b_{F}}{\epsilon} \Gamma_{gg}^{1}(z_{2}) + \frac{1}{2} \frac{b_{0}}{\epsilon} \hat{\Gamma}_{gg}^{1}(z_{1}) + \frac{1}{2} \frac{b_{0}}{\epsilon} \hat{\Gamma}_{gg}^{1}(z_{2}) \\ &+ S_{g \to q} \Gamma_{qg}(z_{1}) \mathscr{G}_{3,qg}^{0}(s_{12}) + S_{g \to q} \Gamma_{qg}(z_{2}) \mathscr{G}_{3,gq}^{0}(s_{12}) + \frac{1}{2} \Gamma_{gq}^{1}(z_{1}) \Gamma_{qg}^{1}(z_{1}) + \frac{1}{2} \Gamma_{gq}^{1}(z_{2}) \Gamma_{qg}^{1}(z_{2}) \end{split}$$

### leading- $N_F$ VV contribution $gg \rightarrow q\bar{q}$

Similarly,

$$\begin{split} \mathrm{d}\sigma_U &= \mathbf{J}_4^1(i_q, 1_g, 2_g, j_{\bar{q}}) B_2^1(i_q, 1_g, 2_g, j_{\bar{q}}) \\ &+ \frac{1}{2} \mathbf{J}_4^1(i_q, 1_g, 2_g, j_{\bar{q}}) \otimes \mathbf{J}_4^1(i_q, 1_g, 2_g, j_{\bar{q}}) B_2^0(i_q, 1_g, 2_g, j_{\bar{q}}) \\ &+ \mathbf{J}_4^2(i_q, 1_g, 2_g, j_{\bar{q}}) B_2^0(i_q, 1_g, 2_g, j_{\bar{q}}) \\ &- \bar{\mathbf{J}}_4^2(i_q, 1_g, 2_g, j_{\bar{q}}) B_2^0(i_q, 1_g, 2_g, j_{\bar{q}}) \end{split}$$

□ allowing us to define the integrated dipoles,  $J_2^{(2)}(q, \hat{g})$ ,  $J_2^{(2)}(q, \hat{g})$  such that IR pole cancellation between real and virtual corrections at NNLO is achieved in transparent and analytic way

$$\mathscr{P}oles\left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV}-\mathrm{d}\hat{\sigma}_{NNLO}^{U}\right)=0\qquad\text{for }gg\rightarrow q\bar{q}$$

Advantages,

- integrated dipoles are process independent
- need to be derived once and for all and then can be recycled to compute other processes at NNLO
- calculation organized in a way that naturally leads to automation of the method

## Jet production partonic channels

Fraction of jets per initial state contribution LHC

- $\square \ gg \to gg \text{ dominates at low } p_T$
- $\square \quad qg \rightarrow qg \text{ important in all } p_T \text{ regions}$
- $\square \quad qq \rightarrow qq \text{ dominant at high } p_T$

#### Tevatron

 $\square$  qg and  $q\bar{q}$  dominant

#### Numerical results at NNLO for

- $\label{eq:gg} \ \ gg \to gg \ \text{at leading colour}$
- $\label{eq:gg} \Box \ gg \to gg \text{ at subleading colour}$
- $\label{eq:qq} \mathbf{\Box} \ q \bar{q} \rightarrow g g \text{ at leading colour}$

Ongoing work

numerical implementation of qg and qq dipoles to extract predictions for qg and qq initial states



- $\square$  pp collisions at  $\sqrt{s} = 8$  TeV
- $\square$  jets identified with the anti- $k_T$  jet algorithm with resolution parameter R = 0.7
- $\hfill\square$  jets accepted at rapidities |y|<4.4
- **D** leading jet with transverse momentum  $p_T > 80 \text{ GeV}$
- **\square** subsequent jets required to have at least  $p_T > 60 \text{ GeV}$
- MSTW2008nnlo PDF for all fixed-order predictions
- □ dynamical factorization and renormalization scales equal to the leading jet  $p_T$ ( $\mu_R = \mu_F = \mu = p_{T1}$ )
- $\square$  present results for full colour  $gg \to gg$  scattering and  $q\bar{q} \to gg$  leading colour combined at NNLO

### Inclusive jet $p_T$ distribution at NNLO



- all jets in an event are binned
- NNLO correction stabilizes the NLO k-factor growth with  $p_T$
- $\hfill\square$  NNLO corrections 15-26% with respect to NLO

### Double differential inclusive jet $p_T$ distribution at NNLO





double differential k-factors

- NNLO prediction increases between 25% to 15% with respect to the NLO cross section
- similar behaviour between the rapidity slices

#### Scale choice for theory prediction



□ scale dependence of the theory prediction gg-channel much reduced at NNLO

 $\square$  size of the correction and uncertainty at low- $p_T$  still depends on scale choice  $P_{T1}$  vs  $P_T$ 

## Double differential exclusive dijet mass distribution at NNLO





#### double differential k-factors

- NNLO corrections up to 20% with respect to the NLO cross section
- □ similar behaviour between the y\* = 1/2|y<sub>1</sub> − y<sub>2</sub>| slices
- asymmetric p<sub>T</sub> cut for leading and subleading jet

#### Comparison with approximate NNLO predictions

- Approximate NNLO results from an improved threshold calculation for the single jet inclusive production [de Florian, Hinderer, Mukherjee, Ringer, Vogelsang '13]
  - $\square$   $pp \rightarrow j + X$  with the threshold limit given by  $s_4 = P_X^2 \rightarrow 0$
  - near threshold phase space available for real-gluon emission is limited
  - higher kth order coefficient functions dominated by large logarithmic corrections

$$\alpha_s^k w_{ab}^{(k)} \to \alpha_s^k \left(\frac{\log^m(z)}{z}\right)_+, \qquad m \le 2k-1, \qquad z = \frac{s_4}{s}$$

 $\square \ \delta(z) \mathsf{X}, \text{ 4th tower } \mathsf{X}, \mathscr{O}(\mathsf{z}) \mathsf{X}$ 



## NNLO benchmark predictions for jet production

- S. Carrazza, JP, arXiv:1407.7031
- understand and characterise the validity of the NNLO threshold approximation by comparing it with the exact computation using the gg-channel
- $\square \ \mu_R = \mu_F = p_T \text{ for both predictions}$
- comparison performed differential in p<sub>T</sub> and rapidity following the exact experimental setups
- NNPDF23\_nnlo\_as\_0118 set for all fixed order predictions
- NLO benchmark curves
  - $\square$  green dashed curves  $\rightarrow$  NLO-threshold gg-channel
  - □ black dashed curves  $\rightarrow$  NLO-exact gg-channel
  - $\hfill\square$  blue dashed curves  $\hfill \rightarrow$  NLO-exact all channels
- NNLO benchmark curves
  - $\begin{array}{c} \square \text{ pink long-dashed curves} & \rightarrow \text{NNLO-threshold } gg\text{-channel} \rightarrow \hline d\sigma_{gg,NNLO}^{\text{thresh}}/d\sigma_{gg,LO} \\ \\ \hline \\ \square \text{ black long-dashed curves} & \rightarrow \text{NNLO-exact } gg\text{-channel} & \rightarrow \hline d\sigma_{gg,NNLO}^{\text{exact}}/d\sigma_{gg,LO} \\ \end{array}$

#### Tevatron CDF Run-II $\sqrt{s}$ =1.96 TeV

#### S. Carrazza, JP, arXiv:1407.7031



**differences**  $\leq$  15% at low- $p_T$  in the central regions

 $\square$  in the forward region differences  $\geq$ 40% for all  $p_T$  regions

## LHC ATLAS 2010 $\sqrt{s}$ =7 TeV

#### S. Carrazza, JP, arXiv:1407.7031

#### K-Factors - ATLAS 2010 7 TeV, ml<0.3



#### K-Factors - ATLAS 2010 7 TeV. 0.8</hl>



K-Factors - ATLAS 2010 7 TeV, 2.8<|n|<3.6



K-Factors - ATLAS 2010 7 TeV, 0.3

differences large at small  $p_T$  and increase with rapidity 

exact NNLO k-factor decreases with rapidity, NNLO threshold k-factor increases with rapidity

## Threshold approximation - gg channel

#### S. Carrazza, JP, arXiv:1407.7031



□ relative difference  $|\delta|$  between exact and approximate gg-channel k-factors as a function of  $p_T$  and |y| for CMS, ATLAS 7 TeV and 2.76 TeV and CDF bins

## Gluon-PDF



- □ jet data has a big impact on the medium to large-*x* gluon PDF reducing its uncertainty
- If at NNLO obtained using a  $|\delta| < 10\%$  criteria which excluded many jet data
- need exact NNLO all-channel prediction to include full jet dataset

## Conclusions

- jet cross sections at the LHC delivered with increasing experimental accuracy making jet measurements precision physics
- double-differential jet measurements have a big impact on the extraction of the gluon PDF at medium to large-x
- experimental and theory errors of comparable size
- □ presented exact results for  $gg \rightarrow gg + X$  and  $q\bar{q} \rightarrow gg + X$  at NNLO
- □ leading-N<sub>F</sub> gg RR, RV and VV corrections derived
- perfomed comparison between exact NNLO results and approximate NNLO results from threshold resummation in the gg-channel
  - $\square$  largest differences arise at low- $p_T$  for central rapidities and all  $p_T$  at large rapidities
  - differences are smaller at the Tevatron than at the LHC 7 TeV

Ongoing work:

- □ numerical implementation of *qg* and *qq* integrated dipoles to extract predictions for *qg* and *qq* initial states
- qg channel most important at the LHC
- $\square$  qq channel important at high  $p_T$

# Back-up slides

## Threshold approximation - gg channel

#### S. Carrazza, JP, arXiv:1407.7031

| CMS 2011           | $N_{\rm dat}$ | $\chi^2/dof$ | Exclusion regions $(y, p_T)$ |                                             |  |  |
|--------------------|---------------|--------------|------------------------------|---------------------------------------------|--|--|
| $ \delta  < 15\%$  | 88            | 1.81         | 1.0 <  y  < 1.5              | $p_T < 153 \text{ GeV}$                     |  |  |
|                    |               |              | y  > 1.5                     | all $p_T$ bins                              |  |  |
| $ \delta  < 10\%$  | 83            | 1.89         | 1.0 <  y  < 1.5              | $p_T < 272 \text{ GeV}$                     |  |  |
|                    |               |              | y  > 1.5                     | all $p_T$ bins                              |  |  |
| $ \delta  < 7.5\%$ | 77            | 1.89         | 0.5 <  y  < 1.0              | $p_T < 153 \text{ GeV}$                     |  |  |
|                    |               |              | 1.0 <  y  < 1.5              | $p_T < 395 \text{ GeV}$                     |  |  |
|                    |               |              | y  > 1.5                     | all $p_T$ bins                              |  |  |
| $ \delta  < 5\%$   | 59            | 1.83         | 0.5 <  y  < 1.0              | $p_T < 220 \text{ GeV}$                     |  |  |
|                    |               |              | 1.0 <  y  < 1.5              | $p_T < 737~{\rm GeV},  p_T > 790~{\rm GeV}$ |  |  |
|                    |               |              | y  > 1.5                     | all $p_T$ bins                              |  |  |

| ATLAS 7 $TeV$      | $N_{\rm dat}$ | $\chi^2/dof$ | Exclusion regions $(y, p_T)$ |                                |  |  |
|--------------------|---------------|--------------|------------------------------|--------------------------------|--|--|
| $ \delta  < 15\%$  | 16            | 1.82         | 0.0 <  y  < 0.3              | $p_T < 260 \text{ GeV}$        |  |  |
|                    |               |              | $0.3 < \left y\right  < 0.8$ | $p_T < 400 \text{ GeV}$        |  |  |
|                    |               |              | 0.8 <  y  < 1.2              | $p_T < 1 \text{ TeV}$          |  |  |
|                    |               |              | y  > 1.2                     | all $p_T$ bins                 |  |  |
| $ \delta  < 10\%$  | 9             | 1.58         | 0.0 <  y  < 0.3              | $p_T < 400 \text{ GeV}$        |  |  |
|                    |               |              | $0.3 < \left y\right  < 0.8$ | $p_T < 800 \text{ GeV}$        |  |  |
|                    |               |              | y  > 0.8                     | all $p_T$ bins                 |  |  |
| $ \delta  < 7.5\%$ | 5             | 2.02         | 0.0 <  y  < 0.3              | $p_T < 500 \text{ GeV}$        |  |  |
|                    |               |              | y  > 0.8                     | all $p_T$ bins                 |  |  |
| $ \delta  < 5\%$   | 1             | -            | 0.0 <  y  < 0.3              | $p_T < 1$ TeV, $p_T > 1.2$ TeV |  |  |
|                    |               |              | y  > 0.3                     | all $p_T$ bins                 |  |  |

|                    |           |              |                              |                         |                   | 0                            |                      |                 |                                             |                          |
|--------------------|-----------|--------------|------------------------------|-------------------------|-------------------|------------------------------|----------------------|-----------------|---------------------------------------------|--------------------------|
| ATLAS 2.76 TeV     | $N_{dat}$ | $\chi^2/dof$ | Exclusion regions $(y, p_T)$ |                         |                   | CDF                          | $N_{dat}$            | $\chi^2/dof$    | Excl                                        | usion regions $(y, p_T)$ |
| $ \delta  < 15\%$  | 10        | 2.15         | 0.0 <  y  < 0.3              | $p_T < 110 \text{ GeV}$ | δ                 | 18 < 150%                    | 60                   | 2.32            | 1.1 <  y  < 1.6                             | $p_T < 96 \text{ GeV}$   |
|                    |           |              | 0.3 <  y  < 0.8              | $p_T < 210 \text{ GeV}$ |                   | 0 < 10/0                     |                      |                 | y  > 1.6                                    | all $p_T$ bins           |
|                    |           |              | u  > 0.8                     | all no bins             | $ \delta  < 10\%$ | 52                           | 1.9e $1.1 <  y  < 1$ | 1.1 <  y  < 1.6 | $p_T < 224~{\rm GeV},  p_T > 298~{\rm GeV}$ |                          |
|                    |           |              | 19 2 010                     | an p <sub>1</sub> onio  | . 1               | 01 / 1010                    | 52                   | 1.00            | y  > 1.6                                    | all no hine              |
| $ \delta  < 10\%$  |           | 0.35         | 0.0 <  y  < 0.3              | $p_T < 260 \text{ GeV}$ |                   |                              |                      |                 | 191 2 210                                   | un p1 onio               |
|                    | 3         |              |                              |                         |                   | $ \delta  < 7.5\% \qquad 48$ | 1.077                | 0.7 <  y  < 1.1 | $p_T < 72 \text{ GeV}$                      |                          |
|                    |           |              | y  > 0.3                     | all $p_T$ bins          |                   |                              | 48                   | 1.37            | 1.37 $ y  > 1.1$ all $p_T$ bins             | all $p_T$ bins           |
| $ \delta  < 7.5\%$ | -         | -            | all $ y $ bins               | all $p_T$ bins          |                   | $ \delta  < 5\%$             | 45                   | 1.28            | 0.7 <  y  < 1.1                             | $p_T < 110 \text{ GeV}$  |
| $ \delta  < 5\%$   | -         | -            | all $ y $ bins               | all $p_T$ bins          |                   |                              |                      |                 | y  > 1.1                                    | all $p_T$ bins           |

- $\square$  Summary of exclusion regions in  $p_T$  and rapidity |y| as a function of the relative difference between exact and threshold k-factors for the gluon-gluon channel
- $\hfill \chi^2/{\rm dof}$  for aNNLO PDF fits as a function of exclusion criteria  $|\delta|$