Constraining the gluon PDF **Rhorry Gauld** Parton Distributions for the LHC Benasque - February 2015 ### Overview - Heavy quark pair physics - charm measurements - top measurements - Electroweak + jets - Prospects for W+jets measurements ### The LHCb detector and data LHCb - forward acceptance: $~\eta \in [2.0, 4.5]$ | Data (ifb) | 7 TeV | 8 TeV | 13 TeV | 14 TeV (2030) | |------------|-------|-------|--------|---------------| | ATLAS/CMS | 5 | 20 | 100 | 3000? | | LHCb | 1 | 2 | ~5 | ~50 | # Heavy quark pair production $pp \to Q_3 \bar{Q}_4 + X$ ### Charm and Bottom production predictions: FONLL - Fixed-Order + Resummation (Cacciari, Greco, Nason arxiv:9803400) Web implementation: http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html Cacciari, Frixione, Houdeau, Mangano, Nason and Ridolfi arxiv:1205.6344 **GMVFNS** - Generalised-Mass Variable-Flavour-Number-Scheme Kniehl. Kramer, Schienbein, Spiesberger hep-ph: arxiv:0901.4130 and refs. therein NLO Interfaced to PS (S. Frixione, P. Nason, B. R. Webber, G. Ridolfi) $$d\hat{\sigma}_D = d\hat{\sigma}_Q \otimes D_{Q \to D}^{\text{NP}}$$ ### Top production predictions: NLO - Nason, Dawson, Ellis, Nucl.Phys.B303 (1988) 607, Nucl.Phys B327 (1989) 49-92 NLO (prod / decay) - Melnikov, Schulze arxiv:0907.3090 Capmbell, Ellis arxiv 1204.1513 NNLO - Czakon, Fielder, Mitov, arxiv:1303.6254, arxiv: 1411.3007 ~NNLO+(Decay) - Broggio, Papanastasiou, Signer, arxiv: 1407.2532 references therein # Why study forward $pp \rightarrow Q_3\bar{Q}_4 + X$? $$x_{1,(2)} = \frac{m_T}{\sqrt{\hat{s}}} (e^{(-)y_3} + e^{(-)y_4})$$ LHCb measurement arXiv: 1302.2864 LHCb measurement arXiv: 1306.3663 # $pp \to t\bar{t}$ LHCb measurement arXiv: 15??.???? ### Cross-section measurements ### D measurement (arXiv: 1302.2864) $$pp \to D + X$$ $$2.0 < y_D < 4.5$$ $$Dp_T < 8.0 GeV$$ ### Mass requirement # Secondary bkg. Complete fit LHCb (a) 1.8 1.85 1.9 ### Displaced vertex # D measurement (arXiv: 1302.2864) # D measurement (arXiv: 1302.2864) PDF Uncertainties smallest Scale Uncertainties smallest p_T # Preliminary results, reweighting NNPDF3.0 Work in progress with J. Rojo, L. Rottoli, S. Sarkar, J. Talbert - 1) Normalise LHCb differential charm data to high-pt, low-y bin - 2) Reweight the 100 replicas based on compatibility with LHCb data (here we use the FONLL predictions obtained from public web interface) NNPDF3.0 NLO α_s =0.118 ### Results from PROSA see - Oleksandr Zenaiev at QCD@LHC2014 (https://indico.desy.de/conferenceDisplay.py?confld=9319) ### Using HERAFitter - Open Source QCD Fit Project - Platform: HERAFitter [www.herafitter.org] HERAFitter - Input data: - HERA-I $e^{\pm}p$ inclusive data (\sim %) [JHEP01 (2010) 109] - Combined HERA charm data ($\sim 5\text{-}10\%$) [EPJ C73 (2013) 2311] - ZEUS beauty vertex data ($\sim 10\text{-}25\%$) [arXiv:1405.6915] - LHCb charm data ($\sim 5\text{-}20\%$) [NPB871 (2013) 1] - LHCb beauty data ($\sim 5-35\%$) [JHEP08 (2013) 117] - Theoretical predictions (FFNS scheme) - NLO QCD predictions for $pp \to HQ$ by M. Mangano, P. Nason and G. Ridolfi [MNR] [NPB327 (1989) 49] - HQ frag. functions: c as meas. at HERA [EPJ C59 (2009) 589, JHEP04 (2009) 082], b as meas. at LEP [NPB565 (2000) 245] - HQ frag. fractions: comb. of LEP and HERA meas. [arXiv:1112.3757] - NLO QCD predictions for HERA data: FFNS ABM scheme - ullet pole HQ masses m_c , m_b left free in the fit - $\alpha_s^{n_f=3}(M_Z)=0.1059\pm0.0005$ (equivalent to PDG $\alpha_s^{n_f=5}(M_Z)=0.1185\pm0.0006$) - DGLAP NLO PDF evolution - 1) PDF Fit using hera data - 2) Study the impact of LHCb data - Fiducial diff. cross section - Normalised diff. cross section ### Results from PROSA see - Oleksandr Zenaiev at QCD@LHC2014 (https://indico.desy.de/conferenceDisplay.py?confld=9319) Using HERAFitter - Open Source QCD Fit Project ### Results from PROSA see - Oleksandr Zenaiev at QCD@LHC2014 (https://indico.desy.de/conferenceDisplay.py?confld=9319) Using HERAFitter - Open Source QCD Fit Project # LHCtt (arXiv: 15xx.xxxx?) Original proposal (in context of ttbar asymmetry): Kagan, Kamenik, Perez, Stone arXiv: 1103.3747 RG arXiv: 1311.1810 (cross section and PDF constraints) # LHCtt (arXiv: 15xx.xxxx?) Original proposal (in context of ttbar asymmetry): Kagan, Kamenik, Perez, Stone arXiv: 1103.3747 RG arXiv: 1311.1810 (cross section and PDF constraints) # LHCtt (arXiv: 15xx.xxxx?) Original proposal (in context of ttbar asymmetry): Kagan, Kamenik, Perez, Stone arXiv: 1103.3747 RG arXiv: 1311.1810 (cross section and PDF constraints) ### Statistical feasibility of top measurements ### Set-up - Signal and background generated with NLO (**POWHEG**) interfaced to PS (**P8**) - Cluster jets with anti-kt algorithm using R = 0.5 distance parameter - Truth match parton level b-quarks to jets within dR < 0.5 (b) - Apply experimental trigger efficiencies (0.75 for high pT muons arxiv: 1204.1620) - b-tagging assumptions: - mis-tag rate 1% (accidentaly think a light-jet is a b-jet) - efficiency 70% (how often you correctly tag a b-jet) $$t \bar t \to XYZ$$ Acceptance Kinematics Isolation # Single lepton + b-jet $$t ar{t} ightarrow l^\pm b X$$ 14 TeV $$2.0 < \eta(l, b) < 4.5$$ $p_T(l/b) > 20/60 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$ # Single lepton + b-jet + jet $$tar{t} ightarrow l^\pm b j X$$ 14 TeV $$2.0 < \eta(l, b) < 4.5$$ $p_T(l, j/b) > 20/60 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$ # As a constraint on the gluon PDF Estimated improvement in gluon PDF with LHCb data Very **conservative** (doesn't include kinematic cuts) ### u(d) ### Wjets at LHCb? $$2.0 < \eta(\mu^{\pm}, j) < 4.5$$ $p_T(\mu^{\pm}/j) > 20/60 \text{GeV}$ ### u(d) ### Wjets at LHCb? $$2.0 < \eta(\mu^{\pm}, j) < 4.5$$ $p_T(\mu^{\pm}/j) > 20/80 \text{GeV}$ ### u(d) ### Wjets at LHCb? Lepton asymmetry (w/ jets) $$A = \frac{N(\mu^{+}j) - N(\mu^{+}j)}{N(\mu^{+}j) + N(\mu^{+}j)}$$ Jet handle! - probe higher-x Sensitive d-PDF uncertainties $$\langle x_1 \rangle = 0.4$$ $$2.0 < \eta(\mu^{\pm}, j) < 4.5$$ $p_T(\mu^{\pm}/j) > 20/60 \text{GeV}$ # Thanks for listening ### B measurement (arXiv: 1306.3663) Theory + Data in agreement - within large theoretical uncertainties (scale) ### Enriched qX->t+Y sample at LHCb ### Dilepton + b-jet $$\delta \sigma_{\rm stat}(1{\rm year}) = 6\%$$ $$t ar t o \mu^\pm e^\mp b X$$ 14 TeV $$2.0 < \eta(l, b) < 4.5$$ $p_T(l, b) > 20 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$ ### Parton level theoretical systematics $$\frac{d\sigma^{\tilde{t}}}{dX} = \frac{1}{2} \left(\frac{d\sigma^t}{dX} + \frac{d\sigma^{\bar{t}}}{dX} \right)$$ Production mechanism ratio: $$\frac{q\bar{q} + |qg|}{total}$$ LHCb probes unique region # Theoretical systematics for forward ttbar? $$\sigma = \sum_{i,j} \int dx_i dx_j f_i(x_i, \mu_F^2) f_j(x_j, \mu_F^2) \frac{d\hat{\sigma}\left(m, \mu_F^2, \alpha_s(\mu_R), \mu_R^2\right)}{d\eta} d\eta$$ $$\frac{d\hat{\sigma}^{\text{LHCb}}}{d\eta} = \frac{1}{2} \left[\frac{d\hat{\sigma}}{d\eta_t} + \frac{d\hat{\sigma}}{d\eta_{\bar{t}}} \right]_{\eta \in [2,5]}$$ $$\frac{1}{2} < \frac{\mu_F}{\mu_R} < 2$$ $$\alpha_s(M_Z) = 0.1184 \pm 0.0007$$ $$\delta PDF = 1\sigma CL$$ $$\delta m_t = 1.5 \text{ GeV}$$ ### Strong coupling $$\sigma^{LHCb}$$ vs. $lpha_s(M_Z)$ ### Current PDG value $$\alpha_s(M_Z) = 0.1184 \pm 0.0007$$ # gluon PDF uncertainty for $\delta \alpha_s$ $$\delta \alpha_s \to \delta \sigma^{\rm LHCb} = 1.3\%$$ | Order | PDF | $\sigma(\mathrm{pb})$ | $\delta_{ m scale} \; (m pb)$ | $\delta_{ ext{PDF}} ext{ (pb)}$ | δ_{α_s} (pb) | δ_{m_t} (pb) | $\delta_{ m total} \; (m pb)$ | |------------------------------------|-------|-----------------------|--------------------------------------|----------------------------------|----------------------------------|--------------------------------|--| | $\overline{\mathrm{NNLO^*(inc.)}}$ | | 832.0 | +18.7 (+2.2%) -27.4 (-3.3%) | +25.1 (+3.0%) $-25.1 (-3.0%)$ | +0.0 (+0.0%)
-0.0 (-0.0%) | +34.9 (+4.2%)
-33.7 (-4.1%) | +61.7 (+7.4%) -69.7 (-8.4%) | | NLO(inc.) | ABM | 771.9 | +91.0 (+11.8%) -92.4 (-12.0%) | +9.4 (+1.2%) -9.4 (-1.2%) | $+0.0 (+0.0\%) \\ -0.0 (-0.0\%)$ | +32.3 (+4.2%) -31.9 (-4.1%) | $\left \begin{array}{c} +124.7 (+16.1\%) \\ -125.7 (-16.3\%) \end{array} \right $ | | NLO(LHCb) | | 117.2 | +14.5 (+12.3%) -14.1 (-12.0%) | $^{+2.0(+1.7\%)}_{-2.0(-1.7\%)}$ | $+0.0(+0.0\%) \\ -0.0(-0.0\%)$ | +5.2 (+4.4%) -5.1 (-4.3%) | +20.0 (+17.1%) -19.5 (-16.7%) | | $NNLO^*(inc.)$ | | 952.8 | +23.3 (+2.4%) -34.5 (-3.6%) | +22.4 (+2.3%) -19.9 (-2.1%) | +14.0 (+1.5%) -14.0 (-1.5%) | +39.2 (+4.1%) -37.8 (-4.0%) | +70.6 (+7.4%) -79.5 (-8.3%) | | NLO(inc.) | CT10 | 832.6 | +97.0 (+11.7%)
-96.7 (-11.6%) | +19.6 (+2.4%) -20.2 (-2.4%) | +9.2 (+1.1%) -9.2 (-1.1%) | +34.0 (+4.1%) -33.3 (-4.0%) | +137.4 (+16.5%) -136.6 (-16.4%) | | NLO(LHCb) | | 137.0 | +16.7 (+12.2%) -16.4 (-12.0%) | +5.0 (+3.6%) -4.6 (-3.4%) | +1.8 (+1.3%) -1.8 (-1.3%) | +5.9 (+4.3%) -5.8 (-4.2%) | +24.7 (+18.0%) -24.0 (-17.5%) | | $NNLO^*(inc.)$ | | 970.5 | +22.1 (+2.3%) -22.0 (-2.3%) | +15.7 (+1.6%) -25.7 (-2.6%) | +12.8 (+1.3%) -12.8 (-1.3%) | +39.6 (+4.1%) -38.4 (-4.0%) | $ \begin{vmatrix} +66.6 & (+6.9\%) \\ -70.0 & (-7.2\%) \end{vmatrix} $ | | NLO(inc.) | HERA | 804.2 | $+91.9 (+11.4\%) \\ -87.6 (-10.9\%)$ | +16.1 (+2.0%) -21.9 (-2.7%) | +5.3 (+0.7%) -5.3 (-0.7%) | +33.4 (+4.1%) -32.4 (-4.0%) | +129.3 (+16.1%) -127.1 (-15.8%) | | NLO(LHCb) | | 124.7 | +14.8 (+11.8%) -13.7 (-11.0%) | +3.0 (+2.4%) -3.0 (-2.4%) | $+1.1 (+0.9\%) \\ -1.1 (-0.9\%)$ | +5.5 (+4.4%) -5.3 (-4.3%) | +21.1 (+16.9%) -19.9 (-15.9%) | | $NNLO^*(inc.)$ | | 953.6 | +22.7 (+2.4%) -33.9 (-3.6%) | +16.2 (+1.7%) -17.8 (-1.9%) | +12.8 (+1.3%) -12.8 (-1.3%) | +39.1 (+4.1%) -37.9 (-4.0%) | +66.9 (+7.0%) -77.7 (-8.1%) | | NLO(inc.) | MSTW | 885.6 | +107.2 (+12.1%) -105.7 (-11.9%) | +16.0 (+1.8%) -19.4 (-2.2%) | +10.1 (+1.1%) -10.1 (-1.1%) | +36.2 (+4.1%) -35.3 (-4.0%) | +148.1 (+16.7%) -147.3 (-16.6%) | | NLO(LHCb) | | 144.4 | +18.6 (+12.8%) -17.8 (-12.3%) | +3.5 (+2.4%) -3.9 (-2.7%) | +1.9 (+1.3%) -1.9 (-1.3%) | +6.2 (+4.3%) -6.1 (-4.2%) | +25.9 (+18.0%) -25.2 (-17.5%) | | $NNLO^*(inc.)$ | | 977.5 | +23.6 (+2.4%) -35.4 (-3.6%) | $+16.4(+1.7\%) \\ -16.4(-1.7\%)$ | +12.2 (+1.3%) -12.2 (-1.3%) | +40.4 (+4.1%) -39.1 (-4.0%) | $+68.9 (+7.0\%) \\ -80.0 (-8.1\%)$ | | NLO(inc.) | NNPDF | 894.5 | +107.6 (+12.0%) -101.0 (-11.3%) | +12.8 (+1.4%) -12.8 (-1.4%) | +9.9 (+1.1%) -9.9 (-1.1%) | +36.6 (+4.1%) -35.8 (-4.0%) | +147.6 (+16.5%) -140.3 (-15.7%) | | NLO(LHCb) | | 142.5 | +18.1 (+12.7%) -16.6 (-11.7%) | +3.0 (+2.1%) -3.0 (-2.1%) | +2.0 (+1.4%) -2.0 (-1.4%) | +6.2 (+4.4%) -6.1 (-4.3%) | +25.2 (+17.7%) -23.7 (-16.6%) | ### Summary of eigenvector sensitivity $$\Delta X_j^{\pm} = \frac{X(\mathcal{S}_j^{\pm}) - X(\mathcal{S}_0)}{X(\mathcal{S}_0)}$$ # Summary of theory systematics (NLO) $$\delta_{\text{total}} = \delta_{\text{scale}} + (\delta_{\text{PDF}}^2 + \delta_{\alpha_s}^2 + \delta_{m_t}^2)^{\frac{1}{2}}$$ # Impact of acceptance cuts (NLO) ### kinematic cuts # Constraining the gluon PDF Perform a bayesian reweighting based on statistical inference. arXiv:1012.0836 NNPDF collaboration arXiv:1205.4024 G. Watt, R. S. Thorne, applied technique to MSTW hessian set I apply the technique to CT10w and NNPDF2.3 NLO sets ### Recipe for Hessian reweighting 1) Calculate observables from eigenvector set $$\{X_0(\mathcal{S}_0), X_1^-(\mathcal{S}_1^-), X_1^+(\mathcal{S}_1^+), ... X_N^-(\mathcal{S}_N^-), X_N^+(\mathcal{S}_N^+)\}$$ 2) Generate random observables from these (storing random numbers) $$X(S_k) = X(S_0) + \sum_{j=1}^{N} [X(S_j^{\pm}) - X(S_0)]|R_{kj}|$$ 3) Apply a reweighting based on a 'measured' observable (e.g. cross-section) $$W_k(\chi_k^2) = (\chi_k^2)^{\frac{1}{2}(N_{pts.}-1)} \exp(-\frac{1}{2}\chi_k^2)$$ 4) Apply these weights to the other observables (gluon PDF, ttbar asymmetry etc.) ### Follow the recipe - steps 1, 2 - 1) Choose observable as evolved gluon PDF, $\,g^{ m Hess}(x,[Q=80~{ m GeV}]^2)$ - 2) Generate 1000 Replicas and compare, $g^{\mathrm{rep}}(x,[Q=80~\mathrm{GeV}]^2)$ # Follow the recipe - steps 3, 4 - 3) Pick some pseudo LHCb cross-section data, $\bar{X}_0 = \frac{1}{N_{\mathrm{rep}}} \sum_{k=1}^{N_{\mathrm{rep}}} X_0(\mathcal{S}_0)[1+R_{k0}]$ - 4) Apply weights found using pseudodata to reweight evolved gluon PDF