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Motivation

How to do low energy effective field theory (in a Wilsonian sense)
for mixed states?

I Path integral contains both bras and kets
⇒ Schwinger-Keldysh doubling: Hphys ⊂ HR ⊗HL

Many applications, e.g., black hole dynamics:

I Double copy somehow encodes physics behind horizon
I The two copies are coupled (entanglement, dissipation, . . . )
I Unitarity? . . .

CFTRCFTL

Preview: doing the doubling properly seems to give a lot of illuminating
structure and powerful formalism (incl. new emergent symmetries)
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Motivation

These are tough questions. Start with something more tractable to learn
about the general structure

Hydrodynamics: generic description of near-equilibrium dynamics of mixed
states on length scales L� `mfp

I This talk: how to make progress on these problems by formulating
hydrodynamics as a Wilsonian effective field theory
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The hydrodynamic gradient expansion

Hydrodynamics: near-equilibrium EFT for long wavelength fluctuations
about Gibbsian density matrix

microscopic theory

↓ L� `mfp

macroscopic fluid variables: uµ(x), T (x), µ(x) (u2=−1)

background sources: gµν(x), Aµ(x)

↓ phenomenology

Constitutive relations: Dynamics:

Tµν = Tµν(0) + Tµν(1) + . . .

Jµ = Jµ(0) + Jµ(1) + . . .

DνT
µν ' FµνJν + T⊥µH

DµJ
µ ' 0J⊥H

E.g. (charged) ideal fluid: Tµν(0) = ε uµuν + pPµν , Jα(0) = q uα

T⊥µH

J⊥H (cov. anomalies)
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The hydrodynamic gradient expansion

Our goal is not...
... to determine transport coefficients (ε, p, q, . . .) for any

particular microscopic system
... to solve the fluid equations for {uµ, T, µ}

Our goal is: to provide all symmetry-allowed constitutive relations order by
order in ∇µ which are consistent with:

Second law constraint:

∃ JµS = s uµ + JµS,(1) + . . . with DµJ
µ
S & 0 (on-shell)

I Gives quite non-trivial constraints on physically allowed
constitutive relations, e.g.:

F Neutral 1st order: viscosities η, ζ ≥ 0
F Neutral 2nd order: 5 relations among 15

a-priori independent transport coefficients
F Anomaly induced transport completely fixed

Bhattacharyya ’12

Son-Surowka ’09

Jensen-Loganayagam-Yarom ’13
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So what’s the problem?

This ’current algebra’ approach is phenomenlogically very well
understood & tested

But: doesn’t make much sense from point of view of Wilsonian field theory

Phenomenological hydrodynamics Natural for field theorist

• “current algebra”: provide all • fields & symmetries ⇒ eff. action S
tensor structures Tµν , Jµ ad hoc • Tµν = 2√

−g
δS
δgµν

, Jµ = 1√
−g

δS
δAµ

• dynamics = conservation laws • dynamics: δS = 0
• second law constraint: DµJ

µ
S & 0 • ??

• ?? • Schwinger-Keldysh path integral
• ?? • dual black hole description
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Outline

X Review of hydrodynamics

→ Adiabaticity and dissipation

◦ Effective actions I: Simple Lagrangians

◦ Classification of transport

◦ Effective actions II: Doubling and emergent symmetry

◦ Outlook: Effective actions III



Disclaimer
From now on I will only discuss neutral fluids.
Adding an arbitrary number of abelian or non-abelian flavours is mainly a
technical task without new conceptual ideas, see [1502.00636].



Off-shell entropy production and adiabaticity

Inequality constraint ∇µJµS & 0 is much more conveniently incorporated if
we don’t have to simplify it using equations of motion.

Use Lagrange multiplier βµ and consider off-shell statement:

∇µJµS + βµ

(
∇νTµν − Tµ⊥H

)
≡ ∆ ≥ 0

Natural Lagrange multiplier:

I βµ = 1
T u

µ (local thermal vector)

Task: solve for {JµS , Tµν} as functionals of {βµ, gµν}

. Ideally: Find Wilsonian effective action which defines all
solutions off-shell

Marginal case ∆ = 0: ’adiabaticity equation’

I Particularly rich structure! ⇒ focus on this first

Loganayagam ’11
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Aside: adiabaticity equation for free energy current

∇µJµS + βµ

(
∇νTµν − Tµ⊥H

)
= 0

Can trade entropy current JµS for free energy current Gσ:

−
Gσ

T
≡ JσS − (JσS )canonical with (JσS )canonical = −βνT

νσ

Grand-canonical version of adiabaticity equation:

−
[
∇σ

(
Gσ

T

)
−
G⊥
H

T

]
=

1

2
Tµν £β gµν

I Solve for {Gσ, Tµν} as functionals of {βµ, gµν}
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Effective actions I: Lagrangians

Consider most obvious effective action:

I Fields: hydrodynamic fields + sources = {βµ, gµν}
I Symmetries: diffeomorphism invariance

S =

ˆ √
−g L[βµ, gµν ]

I Basic variation defines hydrodynamic currents:

δS =
´ √
−g
[

1
2 T

µν δgµν + T hσ δβ
σ +∇µ(/δΘ

PS
)µ︸ ︷︷ ︸

surface term

]
I This defines the stress tensor Tµν

I Does it solve adiabaticity equation?
I Does it exhibit correct dynamics (= conservation)?
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Effective actions I: Lagrangians

To check that Tµν is a solution of adiabaticity equation, need to define
entropy current in terms of effective action S:

JµS = s uµ with s ≡
[

1√
−g

δS

δT

]
{uµ,gµν} fixed

= −hσβσ

Demand invariance of S under arbitrary diffeos. This gives Bianchi identity:

∇νTµν =
gµν√
−g

£β

(√
−g T hν

)
Get indeed solution to adiabaticity equation:

∇µJµS + βµ∇νTµν = −∇µ [(βσhσ)T βµ] +
1√
−g

βν£β

(√
−g T hν

)
= 0
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Remark: interpretation of entropy current

The free energy current derived from our definition of JµS is

Gσ ≡ −Luσ + T (/δBΘPS )
σ︸ ︷︷ ︸

surface term w/
δgµν 7→£βgµν

I Nµ ≡ Lβµ − (/δBΘPS
)µ is the Noether current

for diffeomorphisms along βµ
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Consistency check: hydrostatic equilibrium

To get a feeling for why our Gσ is sensible, consider hydrostatic
equilibrium

I Spacetime manifold: Euclidean ΣM × S1

I ∃ timelike Killing vector Kµ = βµ|equil. with £
K
gµν = 0

Gσ|equil. = −Luσ

... is a Landau-Ginzburg free-energy current! Indeed:

S|equil. =

ˆ
ΣM×S1

L[Kµ, gµν ] ddx = −
ˆ

ΣM

(
Gσ

T

)
dd−1Sσ

... is an equilibrium partition function
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Dynamics

{βµ, gµν}

{�a, gab}

ϕa

To get correct dynamics, formulate problem as a σ-model

I Physical fields are pullbacks of a reference
configuration:

ϕa : physical
fluid

−→ worldvolume
reference
manifold

gµν = ∂ϕa

∂xµ
∂ϕb

∂xν
gab[ϕ(x)] , βµ = ∂xµ

∂ϕa
�a[ϕ(x)]

I Vary pullback fields ϕa, while holding
the reference configuration �a fixed

δS

δϕa
= 0 ⇒

1
√
−g

£β

(√
−g T hν

)
' 0

Reminder: Bianchi identity: ∇νTµν = gµν√
−g £β (

√
−g T hν)

I Hence get the dynamics expected from phenomenology
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So are we done?

Is this a complete Lagrangian theory of hydrodynamics?

I No. A lot of transport is not captured by this construction.
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Example: neutral, conformal fluid at O(∂2)

Most general 2nd order (neutral, Weyl-invariant) stress tensor:

Tµν
(2)

= (λ1 − κ)σ<µασαν>

→ Class D

+ (λ2 + 2τ − 2κ)σ<µαωα
ν>

→ Class B

+ τ
(
uαDW

α σ
µν − 2σ<µαωα

ν>
)

→ Class HS

+ λ3 ω
<µαωα

ν>

→ Class HS

+ κ
(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
)

→ Class HS
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<µαωα

ν> → Class HS
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(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
)

→ Class HS

τ , λ3, κ

Are all derivable from a Lagrangian

LW
2 [βµ, gµν ] =

1

4

[
−

2κ

(d− 2)
(WR) + 2 (κ− τ)σ2 + (λ3 − κ)ω2

]
Note: λ3 and κ are hydrostatic, τ is genuinely hydrodynamic
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(
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→ Class HS

(λ1 − κ)
Leads to ∆ ' −(λ1 − κ) 1

T σ
µ
νσ

ν
ρσ

ρ
µ

⇒ Dissipative (⇒ not Lagrangian)
(but unconstrained by second law, since σ3 � σ2)
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ν> → Class HS

+ κ
(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
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→ Class HS

(λ2 + 2τ − 2κ)

Looks schematically like a Berry curvature (Class B):

(Tµν)B ≡ −
1

4

(
N (µν)(αβ) −N (αβ)(µν)

)
£β gαβ

(cannot be obtained from Lagrangian)
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Example: neutral, conformal fluid at O(∂2)

Out of 5 transport coefficients, 3 come from a Lagrangian: τ , λ3 and κ

For fluids described by L[βµ, gµν ], the other 2 combinations are zero:

(λ1 − κ) = 0 and (λ2 + 2τ − 2κ) = 0

I These relations have been observed in Einstein gravity
F Our simple Lagrangians seem to know about holography

Haack-Yarom ’08

F Derive L[βµ, gµν ] from gravity directly? Nickel-Son ’10

de Boer et al. ’15, Crossley et al. ’15
I First relation ensures no entropy production at subleading order

(this is not required by second law!)
→ ”Principle of minimum dissipation“ in holography?

FH, Loganayagam, Rangamani ’14
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Summary of eight classes of transport

Theorem: The eightfold way of hydrodynamic transport

There are eight classes of hydrodynamic transport consistent with
the second law. Two of them are describable by Lagrangians
L[βµ, gµν ]. Further, Class HF constitutive relations are forbidden
by the second law.

S and V refer to:
Gσ = S βσ +Vσ

FH, Loganayagam, Rangamani ’15
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Effective actions II: Schwinger-Keldysh mystery

Non-equilibrium effective field theory should involve Schwinger-Keldysh
doubling:

Hphys ⊂ HR ⊗HL

Integrating out high energy modes from SK path integral leads to coupling
between R and L (”influence functionals”)

Just doubling everything gives too much freedom (easy to write
influence functionals which violate microscopic unitarity)

I Important obstacle for systematic understanding of non-equilibrium
physics (mixed states, dissipation, fluctuations, noise...)

But: fluids are heavily constrained by second law and a lot of nice structure
in the classification

I Can solve the problem of influence functionals in the case of
hydrodynamics
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Effective actions II: KMS condition

In thermal equilibrium: microscopic theory should satisfy KMS invariance

I Non-local boundary conditions on SK correlators to make sure
they are analytic continuations of Euclidean correlators

OL ORβ
2

Proposal:

At long distances (hydro regime) the non-local KMS relations
turn into an emergent local U(1)T symmetry.
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Effective actions II: KMS condition

How to make this explicit in hydrodynamics?

I Reminder I: ∇µJµS = 0 was mysterious from Wilsonian point of view

I Reminder II: For ’Lagrangian’ classes of transport,
Nσ ≡ JσS − (JσS )canonical is Noether current for diffeomorphisms
along βµ

I Elevate these thermal translations to a U(1)T gauge symmetry with
gauge field A(T)

µ

I Demand effective action be invariant under this symmetry
(s.t. adiabaticity ⇔ U(1)T conservation equation)
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Effective actions II: adiabatic master Lagrangian

Proposed field content:

. Hydrodynamic field: βµ

. Background source: gµν

. SK copy of source: g̃µν

. U(1)T gauge field: A(T)
µ

Proposed symmetries:

. Diffeo invariance

. U(1)T KMS gauge invariance
(act like twisted diffeomorphism along βµ)

Any constitutive relations {Tµν ,Gσ} which satisfy adiabaticity
equation can be obtained from a diffeo and U(1)T invariant
Lagrangian (and vice versa):

LT[βµ, gµν , g̃µν ,A
(T)
µ] =

1

2
Tµν g̃µν −

Gσ

T
A(T)

σ

FH-Loganayagam-Rangamani ’14-’15
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Effective actions II: some compelling features

Field content and symmetries are such that we get precisely the 7
adiabatic classes and nothing more (no Class HF )

I U(1)T keeps Schwinger-Keldysh doubling under control
I Adiabaticity equation is consequence of U(1)T Bianchi identity
I Conserved entropy current is gauge current of emergent U(1)T

symmetry

Summary: this construction provides a complete EFT explanation of
phenomenological axioms of (adiabatic) hydrodynamics
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Outlook: Effective actions III

L[βµ, gµν ]: 2 out of 7+1 classes

L[βµ, gµν , g̃µν ,A
(T)
µ]: effective action for all 7 classes of adiabatic transport

Plan to get the 8th dissipative class:

I Understand in detail the structure of SK path integrals and KMS
condition

F Surprising features: right way to formulate is in terms
of hidden BRST symmetries

I Derive U(1)T emergent symmetry from first principles
I Formulate the hydrodynamic σ-model more systematically
I Action principle for all 8 classes

FH-Loganayagam-Rangamani [1507.xxxxx] and [w.i.p.]

Investigate consequences for holography, black holes etc.
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