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Motivation
@ How to do low energy effective field theory (in a Wilsonian sense)
for mixed states?

» Path integral contains both bras and kets
= Schwinger-Keldysh doubling: H,nys C Hr ® Hr
@ Many applications, e.g., black hole dynamics:

» Double copy somehow encodes physics behind horizon

» The two copies are coupled (entanglement, dissipation, ...)
» Unitarity? ...

CFTyg CFTgr

@ Preview: doing the doubling properly seems to give a lot of illuminating
structure and powerful formalism (incl. new emergent symmetries)
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Motivation

@ These are tough questions. Start with something more tractable to learn
about the general structure

@ Hydrodynamics: generic description of near-equilibrium dynamics of mixed
states on length scales L >> lpy,

» This talk: how to make progress on these problems by formulating
hydrodynamics as a Wilsonian effective field theory
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The hydrodynamic gradient expansion

@ Hydrodynamics: near-equilibrium EFT for long wavelength fluctuations
about Gibbsian density matrix

‘ microscopic theory ‘

\l, L > gmfp

macroscopic fluid variables:  u*(z), T'(z), p(z) (w2=—1)
background sources: g (), Au(x)

J phenomenology

Constitutive relations: Dynamics:
ny 17274 1224 Vo v
T _T(0)+T(1)+... D, TH ~ FH J,
T 7 1 ~
J —J(O)—l—J()—i-... D, J" ~0
@ E.g. (charged) ideal fluid: T(%’)’ = cutu” + p PH Iy = qu®
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The hydrodynamic gradient expansion

@ Hydrodynamics: near-equilibrium EFT for long wavelength fluctuations
about Gibbsian density matrix

‘ microscopic theory ‘

\l, L > gmfp

macroscopic fluid variables:  u*(z), T'(z), p(z) (w2=—1)
background sources: g (), Au(x)

J phenomenology

Constitutive relations: Dynamics:
pwy v 1% Vo~ v 1
T =Tl + THY + ... D, T ~ F".J, +(T¢/]
JM:J(%)""J(M)"'--- D, J" : (cov. anomalies)
@ E.g. (charged) ideal fluid: T(‘g)’ = cutu” + p PH Iy = qu®
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The hydrodynamic gradient expansion

@ Our goal is not...
... to determine transport coefficients (=, p, ¢, ...) for any

particular microscopic system
... to solve the fluid equations for {u*, T u}
@ Our goal is: to provide all symmetry-allowed constitutive relations order by
order in V, which are consistent with:

Second law constraint:
3 J :su“—FJg‘(l)—}—... with D, J§ >0 (on-shell)

» Gives quite non-trivial constraints on physically allowed

constitutive relations, e.g.:

* Neutral 1% order: viscosities 17, > 0
* Neutral 2" order: 5 relations among 15 Son-Surowka 09
a-priori independent transport coefficients
* Anomaly induced transport completely fixed

Bhattacharyya '12

Jensen-Loganayagam-Yarom '13

Felix Haehl (Durham University), 4/22



So what's the problem?

@ This 'current algebra’ approach is phenomenlogically very well

understood & tested

@ But: doesn’t make much sense from point of view of Wilsonian field theory

Phenomenological hydrodynamics

H Natural for field theorist

e ‘“current algebra”: provide all
tensor structures 7", J* ad hoc

o fields & symmetries = eff. action S

e dynamics = conservation laws

py — 2 68 w_— _1 &S
o T = F5en 0 N = A,
e dynamics: 65 =0
e 7?7

e second law constraint: D, J§ > 0

o 77

e Schwinger-Keldysh path integral

° 77

e dual black hole description
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Disclaimer

From now on | will only discuss neutral fluids.

Adding an arbitrary number of abelian or non-abelian flavours is mainly a
technical task without new conceptual ideas, see [1502.00636].




Off-shell entropy production and adiabaticity

@ Inequality constraint V,J& > 0 is much more conveniently incorporated if
we don't have to simplify it using equations of motion.

@ Use Lagrange multiplier 8* and consider off-shell statement:

Vudt+ B, (VT ~ T4 ) = A >0 J

Lo Loganayagam '11
@ Natural Lagrange multiplier:

> Bt = % ut (local thermal vector)

Task: solve for {J4,T*"} as functionals of {B8",g,. }

> Ideally: Find Wilsonian effective action which defines all
solutions off-shell

@ Marginal case A = 0: ’adiabaticity equation’

» Particularly rich structure! = focus on this first
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Aside: adiabaticity equation for free energy current

Vil + B (Vo - Ti) =0 |

@ Can trade entropy current J% for free energy current G°:

g° .
7? = Jg - (']g)canonical with (Jg)canonical = 7131/TD0-

@ Grand-canonical version of adiabaticity equation:
o gJ_

_ [VU (-2

T T

» Solve for {G7, T""} as functionals of {3*, g, }

1
=5 T" £pguw }
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Effective actions |: Lagrangians

@ Consider most obvious effective action:

» Fields: hydrodynamic fields + sources = {8", g,.,}
» Symmetries: diffeomorphism invariance

S=/\/fg£[ﬁ“,guu]

» Basic variation defines hydrodynamic currents:

68 = [ V=g [% T 8gu + Tbo 66° + V,u(§6,5)" ]
N——

surface term

v

This defines the stress tensor 7"
Does it solve adiabaticity equation?
Does it exhibit correct dynamics (= conservation)?

\4

v
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Effective actions |: Lagrangians

@ To check that T"" is a solution of adiabaticity equation, need to define
entropy current in terms of effective action S:

1 4S5

—— =—bh,087
v—Y 5T] {ur, gy, } fixed

JE = sut with s = {

@ Demand invariance of S under arbitrary diffeos. This gives Bianchi identity:

v, T = L_g £5 (V=g Th,)

R

@ Get indeed solution to adiabaticity equation:

1
Vuds +BuV,T" = =V, [(87,)T B"] +ﬁ B L£s(V—9gTh,) =0
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Remark: interpretation of entropy current

@ The free energy current derived from our definition of J¥ is
Go=—Lu +T (ﬁrg,@PS)"
——

surface term w/
Sguv L339y

» Nt = LBH — (§30,)" is the Noether current

for diffeomorphisms along 3*
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Consistency check: hydrostatic equilibrium

@ To get a feeling for why our G7 is sensible, consider hydrostatic
equilibrium
» Spacetime manifold: Euclidean X x S*
» 3 timelike Killing vector K* = B"|cqu. with £, g, =0

G’ ‘equil. = —Lu?

. is a Landau-Ginzburg free-energy current! Indeed:

S‘eqm’l. :/ E[K“,guy] dix = _/ (%) dd7150
ZMXSI EM

. is an equilibrium partition function
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Dynamics

@ To get correct dynamics, formulate problem as a o-model

» Physical fields are pullbacks of a reference
configuration:

a . physical worldvolume
PrE Thaig T pelerencs
- -1
0% 8t St —-+— '
gur = 92232 Guble(@)], B =3%r “le(x)] \

» Vary pullback fields ©®, while holding
the reference configuration ¢ fixed

S 1
-0 =  —— £5(/gTh))~0
5 = s ( )

v

@ Reminder: Bianchi identity: V,TH = \'(}L—g £g(vV=9Th)

» Hence get the dynamics expected from phenomenology
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So are we done?

@ Is this a complete Lagrangian theory of hydrodynamics?
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So are we done?

@ Is this a complete Lagrangian theory of hydrodynamics?
» No. A lot of transport is not captured by this construction.
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Example: neutral, conformal fluid at O(9?)

@ Most general 2" order (neutral, Weyl-invariant) stress tensor:

T(‘;g = (\ — k) o<HY, Y
+ (A2 + 27 — 2k) o <HALL Y
+ 7 (uo‘DOVCVO‘“’ - 20<“°‘wa">)
+ A3 wSHeW V>

Tk (Cy.auﬁuauﬁ +0_<,u.a0_&u> +2O.<;Lawal/>)
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Example: neutral, conformal fluid at O(9?)

@ Most general 2nd order (neutral, Weyl-invariant) stress tensor:
THY = (O — k) o<He 0>
+ (M2 + 27 — 26) o <HYW PP
+ 7 (uO‘DZVU‘“’ — 20<“O‘wa”>) — Class Hg
+ A3 wSHYY P> — Class Hg

+ K (C“‘M’Buauﬂ + oSHAG VP 4 2U<“O‘wa”>) — Class Hg

T, A3, K

Are all derivable from a Lagrangian

2K
(d—2)

LY(B*, gu] = i [— "R)+2(k—7)02+ (N3 — H)w2:|

Note: \3 and x are hydrostatic, 7 is genuinely hydrodynamic
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Example: neutral, conformal fluid at O(9?)

@ Most general 2" order (neutral, Weyl-invariant) stress tensor:

Tél; = (\1 — k) g<HAG, V> — Class D
+ (A2 + 27 — 26) 0 <FYW PP

+ 7 (UO‘QZVU”” — 2cr<”°‘wa”>) — Class Hg

+ A3 wSHEY V> — Class Hg

+ K (C“O‘”Buauﬂ 4+ oSHaG V> 4 20’<‘w‘wa”>) — Class Hg
(M = &)

Leads to A ~ —(\; — k) 3 0*,0" 07,
= Dissipative (= not Lagrangian)

(but unconstrained by second law, since o® < o?)
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Example: neutral, conformal fluid at O(9?)

@ Most general 2" order (neutral, Weyl-invariant) stress tensor:

T(;;r; =\ — k) oSHagL V> — Class D
+ (N2 + 27 — 26) T FYW, Y7 — Class B
+ T (UQDE\}O’MV — 20<“°‘wa">) — Class Hg
+ A3 wSHwe P — Class Hg
+ K (C”‘O‘”ﬁuaug + oSHYG VT 4 20<“0‘wa”>) — Class Hg
()\2 + 27 — 2/<6)

Looks schematically like a Berry curvature (Class B):

(T*)g = (N(W)(aﬁ) _N(aB)(MV)) £53 9ap

1
4

(cannot be obtained from Lagrangian)
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Example: neutral, conformal fluid at O(9?)

@ Out of 5 transport coefficients, 3 come from a Lagrangian: 7, A3 and &

@ For fluids described by £[8", g,..], the other 2 combinations are zero:
(M —k)=0 and (A2+27—2k)=0

» These relations have been observed in Einstein gravity  saac-9urom 0s
* Our simple Lagrangians seem to know about holography
* Derive L[B*, g..| from gravity directly? Nickel-Son '10
de Boer et al. '15, Crossley et al. '15
» First relation ensures no entropy production at subleading order
(this is not required by second law!)
— " Principle of minimum dissipation* in holography?

FH, Loganayagam, Rangamani '14
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Hydrostatic &'
flux vectors

Summary of eight classes of transport

Hydrodynamic
v flux vectors

S and V refer to:
G° =SB +V°

(o
A"

©
A
&
o
%
2

Hydrostatic
forbidden

Hr FH, Loganayagam, Rangamani '15

Theorem: The eightfold way of hydrodynamic transport

There are eight classes of hydrodynamic transport consistent with
the second law. Two of them are describable by Lagrangians

L]|B*, guv|. Further, Class Hp constitutive relations are forbidden
by the second law.
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Effective actions Il: Schwinger-Keldysh mystery

@ Non-equilibrium effective field theory should involve Schwinger-Keldysh
doubling:
Hphys CHROHL

@ Integrating out high energy modes from SK path integral leads to coupling
between R and L (”influence functionals”)

Just doubling everything gives too much freedom (easy to write
influence functionals which violate microscopic unitarity)

» Important obstacle for systematic understanding of non-equilibrium
physics (mixed states, dissipation, fluctuations, noise...)

@ But: fluids are heavily constrained by second law and a lot of nice structure
in the classification

» Can solve the problem of influence functionals in the case of
hydrodynamics

Felix Haehl (Durham University), 17/22



Effective actions II: KMS condition

@ In thermal equilibrium: microscopic theory should satisfy KMS invariance

» Non-local boundary conditions on SK correlators to make sure
they are analytic continuations of Euclidean correlators

O[l OR

@ Proposal:

At long distances (hydro regime) the non-local KMS relations
turn into an emergent local U(1)t symmetry.
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Effective actions II: KMS condition

@ How to make this explicit in hydrodynamics?

» Reminder I: V,,J§ = 0 was mysterious from Wilsonian point of view

» Reminder Il: For 'Lagrangian’ classes of transport,
N7 = Jg — (JZ)canonical is Noether current for diffeomorphisms
along g*

» Elevate these thermal translations to a U(1)1 gauge symmetry with
gauge field AT,

» Demand effective action be invariant under this symmetry
(s.t. adiabaticity < U(1)t conservation equation)

Felix Haehl (Durham University), 19/22



Effective actions |l: adiabatic master Lagrangian

Proposed field content:

> Hydrodynamic field: BH
> Background source: Gz
> SK copy of source: G
> U(1)t gauge field: A,

Proposed symmetries:

> Diffeo invariance
> U(1)t KMS gauge invariance
(act like twisted diffeomorphism along B*)

@ Any constitutive relations {7, G} which satisfy adiabaticity
equation can be obtained from a diffeo and U (1)t invariant

Lagrangian (and vice versa): FI. Loganayagam-Rangamani '14-'15
1 Ge
) T U~ -
8" G s K] = 5 T s = T A
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Effective actions |lI: some compelling features

@ Field content and symmetries are such that we get precisely the 7
adiabatic classes and nothing more (no Class Hp)

» U(1)T keeps Schwinger-Keldysh doubling under control

» Adiabaticity equation is consequence of U(1)t Bianchi identity

» Conserved entropy current is gauge current of emergent U (1)t
symmetry

@ Summary: this construction provides a complete EFT explanation of
phenomenological axioms of (adiabatic) hydrodynamics

Felix Haehl (Durham University), 21/22
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Outlook: Effective actions Il

o L[B", guv]: 2 out of 741 classes

o L[B", guv, Guv, AT,]: effective action for all 7 classes of adiabatic transport
@ Plan to get the 8" dissipative class:

» Understand in detail the structure of SK path integrals and KMS
condition

* Surprising features: right way to formulate is in terms
of hidden BRST symmetries

» Derive U(1)t emergent symmetry from first principles
» Formulate the hydrodynamic o-model more systematically
» Action principle for all 8 classes

FH-Loganayagam-Rangamani [1507.xxxxx/] and [w.ip.]

@ Investigate consequences for holography, black holes etc.

Felix Haehl (Durham University), 22/22
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