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Introduction



Differential entropy and hole-ography

Balasubramanian, de Boer, Chowdhury, Czech & Heller 1310.4204

Consider a CFT; in the vacuum (say on S' of length L) and entanglement entropy
of an interval of an angular opening 2«

2L
S(a) = glog(j sin o)

Consider now an infinite family of intervals given by a(6) and compute

B /QW 40 S (a(6))

This novel UV-finite quantity Is called differential entropy.
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In a holographic CFT7 1t
measures areas of
closed curves on a
constant-t slice of AdSs
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KI nematic SPaCe Czech, Lamprou, McCandlish & Sully 1505.05515

One can introduce a partial order on the set of intervals for which we calculate EE
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This (partially) motivates introducing the light-cone coordinates ©w = 6 — a and
v = 0 + « and considering space with the volume form w = 0,,0,)S du A dv

SSA turns out to guarantee 9,,0,5 > 0. For the vacuum we obtain

C

— du A d
YT et ()T

The minimal metric compatible with this volume form and the partial order is

S dudv=———— (—do® + db?)

~ 125in? () 12 sin?(a)
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Question behind this work

s there more to this Lorentzian structure
than merely ordering intervals on a constant time slice of a CFT?
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Dynamics in de Sitter



Entanglement first law

Consider small perturbations of some reference density matrix p = pg + dp

The change in the entropy Is equal to the change in the modular Hamiltonian

0S5 = —tr (plogp) — So = 6(Hmoq)

In general, Hy,0a = log p is unknown, but for reduced density matrices for spherical
entangling surfaces in the CFTp vacuum 1t turns out to be fixed by conformality

2 =2
H o — 27r/ J(D-1),. @ | 7] T
|fP<a2 2&

Casini, Huerta & Myers | 102.0440

As a result, the change in the entanglement entropy for small perturbations of |0) is

2 122
55 = 2 / 400 & T 5oy
|5P<a2 20¢
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Entanglement first law yields dynamics in de Sitter

In two dimensions (on a plane) we simply have

0+« 2 . 2
55(9,04):—%/ PPl Gk

(Trr)(x) atfixed T

0—« 20v
//"’—_--__-.-..‘."‘-.______________———————————‘——— <7}T>($)
05(6, )
+——> >
0 — « 0 + «

[t Is straightforward to check that

1 2
\/—_78a (V=99™ 8, 3S) — 7505 =0
L? . . . .
with gap dz®dx® = = (—da® + df*) being the inflationary patch of de Sitter; !
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Specific example: universal excited state

Any CFT has T}, operator,hence T, (79,60)|0) is an universal excitation in CFT3's
cf. Nozaki, Numasawa & Takayanagi 1401.0539

O] Trr (10 + €,00) Trr (7, 2) Trr (10 — €,00) |0) _462 ATt — 6 AT2AH? + AG?

TTT — ~
< > <O| TT’T(TO + €, 90) TT’T(TO — €, 90) |O> 7T (ATZ —+ A92)4

Entanglement first law:

5S(0, ) = —2r / N ;9 — ) (T, ) ()
0—« Q

/ O
1
2

dS; analogue of the bulk-boundary %68
smearing function by Kabat et al.
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Generalization to higher spins in CFT>
The exploratory idea of Hijano & Kraus 1406.1804 is the following:

OH,, g = _/ dz <(Z — )z - Zl)) T'(z) + antiholomorphic

so In the presence of a higher spin current (here spin-3 current W) one can try

92 . _ 2
OHmod,3 = _3/ dz ((Z 2)(z Zl)) W (z) + antiholomorphic

21 22 — <1

0+« 2 B o\ Y
) . . a” — (0 —x) |

Ny quantity behaving as ~ dx 9 f(z) leads to a dynamical
fields in de Sitter with 0—a o

/ \

perturbation in entanglement entropy Jano & Kraus construction

m2L2 — —9 m2L2 = —06
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Generalization to higher dimensions

The first law for any CFT in D spacetime dimensions

2 |22
0S5 = —27?/ 4P~y 2 Z 0(Trr)
|f|2<a2 200

implies propagation in D-dimensional de Sitter

1

ab = _
——0a (V=94" ,65) Y 55 =0

2

. L . . . .
with  gup dz%dz’® = == (—da? + d?) being the inflationary patch of de Sitterp .
o2 8 Y P

Note that free field theories have 00 many higher spin currents.
see, e.g,, Maldacena & Zhiboedov | 12.1016

By extrapolating [406.1804 we might expect then 00  many fields in de Sitterp
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Relation to Einstein’s equations in AdS

In 2013 several groups were able to derive linearized Einstein’s equations from
the Ryu- Takayanagi proposal and the first law of entanglement entropy.

In 1304.7100 Takayanagl et al. showed that linearized Einstein's equations in AdS3 give

(at2 - afz)ASA(ga L t) =0,

1 2
2 2 _
Linear combination gives our wave equation on dS:: [—83/2 + 07 — (1;22)2 ASA(E,1,t) = 0.

In 1308.3/92 Bhattacharya and lakayanagl obtained from Einstein's equations in AdS4
0> 10| 3| 0* 09°
[W — Za— 522 3—y2] ASa(t,z,y,l) =0.

VWe see here that this equation in any D has nothing to do with a 2-derivative
geometry and follows purely from the underlying conformal symmetry.
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Summary and open problems



Summar)' ongoing work with Rob Myers and Guifre Vidal
Entanglement in excited states organizes itself in a Lorentzian way:

Vo V*

55 —m?265 =0 with m*Lig = —D, eg.

At=1

s

forin  17(70,0)]0) ECFT,

L
and  ds%g = ?(—doﬂ + db?).

20 ‘
This statement applies to any CFT in any D provided the first law holds!

The statement concerns constant time slices in a CFT.

For theories with higher spin charges: one dynamical field in dSp for each charge.
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Some open problems

s recent explosion of emergent “geometries” an artifact of considering CFTs ¢

Does auxiliary de Srtter = kinematic space !

Higher dimensional generalization of differential entropy and hole-ography ¢

Other fields in de Sitter; In particular gravitons! Nonlinear eoms! New holography ?

Local operators in de Sitter (generalization of Kabat et al.) ?
see Xiao Xiao 1402.7080

Link with MERA / cMERA ?
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