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Motivation

I Powerful exact results for supersymmetric field theories on curved
manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...

I Supersymmetric localization reduces the path integral of a gauge theory
to a finite dimensional matrix integral. Still hard to evaluate explicitly in
general!

I Make progress by taking the planar limit for specific 4d N = 2
(non-conformal) gauge theories. [Russo], [Russo-Zarembo], [Buchel-Russo-Zarembo]

I Evaluation of the partition function of planar SU (N ), N = 2∗ SYM on
S4. An infinite number of quantum phase transitions as a function of
λ ≡ g2

YM N . [Russo-Zarembo]

I Apply gauge/gravity duality to this setup and test holography in a
non-conformal setup.

I Study N = 1 theories hologrphically. Localization has not been successful
for these theories.
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Motivation

I N = 1∗ SYM is a theory of an N = 1 vector multiplet and 3 massive
chiral multiplets in the adjoint of the gauge group. It is a massive
deformation of N = 4 SYM. There is a unique supersymmetric
Lagrangian on S4. [Pestun], [Festuccia-Seiberg]

I The result from localization for N , λ� 1 for N = 2∗ is [Russo-Zarembo]

FN=2∗

S4 = − logZN=2∗

S4 = −N 2

2 (1 + (mR)2) log λ(1 + (mR)2)e2γ+ 1
2

16π2 ,

For N = 1∗ hard to calculate the partition function in the field theory

I The goal is to calculate FN=2∗

S4 and FN=1∗

S4 holographically.

I Precision test of holography! In AdS5/CFT4 one typically compares
numbers. Here we have a whole function to match.

I Previous results for holography for N = 1∗ and N = 2∗ on R4. [FGPW],

[GPPZ], [Pilch-Warner], [Buchel-Peet-Polchinski], [Evans-Johnson-Petrini], [Polchinski-Strassler], ... On
S4 the holographic construction is more involved.
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N = 1∗ SYM theory on S4



N = 1∗ SYM on R4

The field content of N = 4 SYM is

Aµ , X1,2,3,4,5,6 , λ1,2,3,4 .

Organize this into an N = 1 vector multiplet

Aµ , ψ1 ≡ λ4 ,

and 3 chiral multiplets

χj = λj , Zj = 1√
2
(
Xj + iXj+3

)
, j = 1, 2, 3 .

Only SU (3)×U (1)R of the SO(6) R-symmetry is manifest.

The N = 1∗ theory is obtained by giving (independent) mass terms for the
chiral multiplets.
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N = 1∗ SYM on S4

The theory is no longer conformal so it is not obvious how to put it on S4.

When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

LS4
N=1∗ = LS4

N=4

+ 2
R2 tr

(
Z1Z̃1 + Z2Z̃2 + Z3Z̃3

)
+ tr

(
m1m̃1Z1Z̃1 + m2m̃2Z2Z̃2 + m3m̃3Z3Z̃3

)
− 1

2 tr (m1χ1χ1 + m2χ2χ2 + m3χ3χ3 + m̃1χ̃1χ̃1 + m̃2χ̃2χ̃2 + m̃3χ̃3χ̃3)

− 1√
2

tr
[
miε

ijkZiZ̃jZ̃k + m̃iε
ijkZ̃iZjZk

]
+ i

2R tr
(

m1Z 2
1 + m2Z 2

2 + m3Z 2
3 + m̃1Z̃1

2 + m̃2Z̃2
2 + m̃3Z̃3

2
)
.

15 (real) relevant couplings in the Lagrangian + 1 complex gaugino vev + 1
complexified gauge coupling. A 19 (real) parameter family of N = 1
deformations of N = 4 SYM. Only 18 of these parameters are visible as modes
in IIB supergravity.

For m3 = m̃3 = 0, m1 = m2 ≡ m and m̃1 = m̃2 ≡ m̃ we get the N = 2∗
theory.
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Results from localization for N = 2∗

The SU (N ) gauge symmetry is generally broken to U (1)N−1 by a vev for Z3.

Z3 = diag(a1, . . . , aN ) .

After supersymmetric localization the path integral for the theory on S4

reduces to a finite dimensional integral over the Coulomb moduli ai . [Pestun]

Z =
∫ N∏

i=1

dai δ

(
N∑

i=1

ai

)∏
i<j

(ai − aj)2Z1-loop|Zinst|2e−Scl ,

where

Scl = 8π2N
λ

N∑
i=1

a2
i , Z1-loop =

N∏
i=1

H 2(ai − aj)
H (ai − aj + mR)H (ai − aj −mR) ,

H (x) =
∞∏

n=1

(
1 + x2

n2

)n

e−x2/n .

The function Zinst is Nekrasov’s partition function with parameters
ε1 = ε2 = 1/R.



Results from localization for N = 2∗

Russo and Zarembo solved (numerically) this matrix model at large N . They
found an infinite number of (quantum) phase transitions as a function of λ.

One caveat. They assume that Zinst = 1 for large N . This is important and will
be checked holographically.

The result for N , λ� 1 is

FS4 = − logZ = −N 2

2 (1 + (mR)2) log λ(1 + (mR)2)e2γ+ 1
2

16π2 .

This answer depends on the regularization scheme. The scheme independent
quantity is

d3FS4

d(mR)3 = −2N 2 mR((mR)2 + 3)
((mR)2 + 1)2

This is the unambiguous result one can aim to compute holographically.
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The gravity dual



Supergravity setup
Use 5d N = 8 gauged supergravity to construct the holographic dual.

Why is
this justified?

I It is a consistent truncation of IIB supergravity on S5 with fields dual to
the lowest dimension operators in N = 4 SYM. [Lee-Strickland-Constable-Waldram]

I The gravity dual of N = 2∗ on R4 was constructed first in 5d. [Pilch-Warner]

From field theory we expect that the solutions we are after posses
U (1)V ×U (1)H ×U (1)Y global symmetry. Impose this on the 5d N = 8
supergravity.

The result is that only 3 real scalars, 2 Abelian gauge fields and the metric
survive in the bosonic sector. The 3 scalars, {φ, ψ, χ}, are dual to 3 relevant
operators

Oφ , ∆Oφ = 2 ; Oψ , ∆Oψ = 3 ; Oχ , ∆Oχ = 2 .

It is convenient to use

η = eφ/
√

6 , z = 1√
2
(
χ+ iψ

)
, z̃ = 1√

2
(
χ− iψ

)
.

In Euclidean signature the fields z and z̃ are independent.

For χ = 0 recover the truncation for N = 2∗ on R4. [Pilch-Warner]
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Supergravity setup

The Euclidean Lagrangian is

L = 1
2κ2

[
−R+ 12∂µη∂

µη

η2 + 4 ∂µz∂µz̃
(1− zz̃)2 + V

]
,

V ≡ − 4
L2

(
1
η4 + 2η2 1 + zz̃

1− zz̃ + η8

4
(z − z̃)2

(1− zz̃)2

)
.

This is a non-linear sigma model with target R×H2 ' O(1, 1)× SU(1,1)
U(1) .

To preserve the isometries of S4 take the “domain-wall” Ansatz

ds2 = L2e2A(r)ds2
S4 + dr2 ,

η = η(r) , z = z(r) , z̃ = z̃(r) .

The masses of the scalars around the AdS5 vacuum are

m2
φL2 = m2

χL2 = −4 , m2
ψL2 = −3 .
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The BPS equations

Plug the Ansatz in the supersymmetry variations of the 5d N = 8 theory and
use the “conformal Killing spinors” on S4

∇̂µζ = 1
2γ5γµζ ,

to derive the BPS equations

z ′=
3η′(zz̃ − 1)

[
2(z + z̃) + η6(z − z̃)

]
2η [η6 (z̃2 − 1) + z̃2 + 1] ,

z̃ ′=
3η′(zz̃ − 1)

[
2(z + z̃)− η6(z − z̃)

]
2η [η6 (z2 − 1) + z2 + 1] ,

(η′)2=
[
η6 (z2 − 1

)
+ z2 + 1

] [
η6 (z̃2 − 1

)
+ z̃2 + 1

]
9L2η2(zz̃ − 1)2 ,

e2A =
(zz̃ − 1)2 [η6 (z2 − 1

)
+ z2 + 1

] [
η6 (z̃2 − 1

)
+ z̃2 + 1

]
η8 (z2 − z̃2)2 .
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UV expansion
The (constant curvature) metric on H5 is

ds2
5 = dr2 + L2 sinh2

( r
L

)
ds2

S4 .

Solving the BPS equations iteratively, order by order in the asymptotic
expansion as r →∞, we find (with L = 1)

e2A = e2r

4 + 1
6(µ2 − 3) + . . . ,

η = 1 + e−2r
[

2µ2

3 r + µ(µ+ v)
3

]
+ . . . ,

1
2(z + z̃) = e−2r

[
2µ r + v

]
+ . . . ,

1
2(z − z̃) = µ e−r + e−3r

[
4
3µ
(
µ2 − 3

)
r + 1

3

(
2v(µ2 − 3) + µ(4µ2 − 3)

)]
+ . . . .

Here µ and v are integration constants. Think of them as the “source” and
“vev” for the operator Oχ. Compare to field theory to identify µ = imR.
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IR expansion

At r = r∗ the S4 shrinks smoothly to zero size. Solve the BPS equations close
to r = r∗, and require that the solution is smooth to find

e2A = (r − r∗)2 + 7η0
12 + 20

81η04 (r − r∗)4 + . . . ,

η = η0 −
(
η0

12 − 1
27η03

)
(r − r∗)2

[
1−

(
85 + 131η0

12

810η04

)
(r − r∗)2 + . . .

]
,

1
2(z + z̃) =

√
η0

6 − 1
η06 + 1

[
η0

6

η06 + 2 −
2η0

8(4η0
6 + 5)

15(η06 + 2)2 (r − r∗)2 + . . .

]
,

1
2(z − z̃) =

√
η0

6 − 1
η06 + 1

[
2

η06 + 2 + η0
2(3η0

12 − 10η0
6 − 20)

15(η06 + 2)2 (r − r∗)2 + . . .

]
.

Here, η0 is the only free parameter since one can set r∗ = 0 by the shift
symmetry of the equations.
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Numerical solutions
One can find numerical solutions by “shooting” from the IR to the UV. There
is a one (complex) parameter family parametrized by η0, so

v = v(η0) , and µ = µ(η0) .
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Numerical solutions

For real η0 one finds the following results for v(µ)
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From the numerical results one can extract the following dependence

v(µ) = −2µ− µ log(1− µ2)



Holographic calculation of FN=2∗

S4



Calculating F from supergravity

I By the holographic dictionary the partition function of the field theory is
mapped to the on-shell action of the supergravity dual. [Maldacena], [GKP],

[Witten]

I The on-shell action diverges and one has to regulate it using holographic
renormalization. [Skenderis], ...

I There is a subtlety here. If we insist on using a supersymmetric
regularization scheme there is a particular finite counterterm that has to
be added. Only with it one can successfully compare d3F

dµ3 with the field
theory result.

I Without knowing this finite counterterm we can only hope to match d5F
dµ5

with field theory.
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Calculating F from supergravity
The full renormalized 5d action is

Sren = S5D + Sct + Sfinite .

Differentiate the renormalized action w.r.t. µ to find

dFSUGRA

dµ = N 2

2π2 vol(S4)
(

4µ− 12v(µ)
)

= N 2
( 1

3µ− v(µ)
)
.

Finally we arrive at the supergravity result

d3FSUGRA

dµ3 = −N 2 v′′(µ) = −2N 2 µ (3− µ2)
(1− µ2)2 .

Set µ = imR and compare this to field theory

d3FS4

d(mR)3 = −2N 2 mR((mR)2 + 3)
((mR)2 + 1)2 .

Lo and behold
d3FS4

d(mR)3 = d3FSUGRA

dµ3

Without the finite counterterm we can only match d5FSUGRA

dµ5 with field theory.
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N = 1∗



N = 1∗
The dual of the 18-parameter family of deformations of N = 4 SYM is
captured by a 5d N = 2 gauged supergravity with a scalar coset

O(1, 1)×O(1, 1)× SO(4, 4)
SO(4)× SO(4) .

This model is a consistent truncation of IIB supergravity.

There are special cases which allow for a very explicit analysis.

I mi = m̃i and m1 = m2 = m3 - in flat space this is the GPPZ/PS flow.
[Girardello-Petrini-Porrati-Zaffaroni], [Polchinski-Strassler]. It has SO(3) global symmetry.
On S4 we need 4 supergravity scalars.

I m1 = m̃1 and m2 = m3 = 0 - in flat space this is the Leigh-Strassler flow.
[Freedman-Gubser-Pilch-Warner] On S4 we need 3 supergravity scalars.

For both examples we found explicit supergravity truncations and (numerical)
BPS solutions on S4.

The hard part is to extract the third derivative of the free energy from the
numerical solutions.

No results from localization to guide us.
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LS on S4

From holographic renormalization one again finds

d3FSUGRA

dµ3 = −N 2 v′′(µ) .

On the whole complex µ-plane v′′(µ) vanishes linearly around µ ≈ 0. It is an
odd function of µ and falls off for |µ| � 1 as

|v′′(µ)| ∼ 2
|µ| .
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There is a pole at µ = ±1 with

|v′′(µ)| ∼ 1
(1± µ)3 .
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Summary

I We found a 5d supegravity dual of N = 2∗ SYM on S4.

I After careful holographic renormalization we computed the universal part
of the free energy of this theory.

I The result is in exact agreement with the supersymmetric localization
calculation in field theory.

I This is a precision test of holography in a non-conformal Euclidean
setting.

I Extension of these results to N = 1∗ SYM where our results can be
viewed as supergravity “lessons” for the dynamics of the gauge theory.

I The results extend immediately to N = 2∗ mass deformations of quiver
gauge theories obtained by Zk orbifolds of N = 4 SYM.
[Azeyanagi-Hanada-Honda-Matsuo-Shiba]
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Outlook

I Uplift of the N = 2∗ solution to IIB supergravity. Will allow for a
holographic calculation of Wilson or ’t Hooft line vevs. In addition one
can study probe D3-branes. [Chen-Lin-Zarembo]

I Holography for N = 1∗ on other 4-manifolds. [Cassani-Martelli]

I Extensions to other N = 2 theories in 4d with holographic duals, e.g.
pure N = 2 SYM? [Gauntlett-Kim-Martelli-Waldram]

I Extensions to other dimensions.

I Can we see some of the large N phase transitions argued to exist by
Russo-Zarembo in IIB string theory?

I Revisit supersymmetric localization for N = 1 theories on S4. Can one
find the exact partition function (modulo ambiguities)?
[Gerchkovitz-Gomis-Komargodski]

I For 4d N = 2 conformal theories ZS4 gives the Zamolodchikov metric.
What is the “meaning” of ZS4 for non-conformal theories?

I Broader lessons for holography from localization?
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Comments
For a CFT on S4 of radius R with cutoff ε→ 0

FS4 = α4

(R
ε

)4
+ α2

(R
ε

)2
+ α0 − aanom log

(R
ε

)
+O(ε/R) .

For supersymmetric theories with a supersymmetric regularization scheme
α4 = 0.

For massive theories there is an extra scale, m, so α2 = α2(mε) and
α0 = α0(mε). Expand this for small mε

α2 = α̃2 + m2ε2β2 +O(m4ε4) ,
α0 = α̃0 +O(m2ε2) .

The nonuniversal contribution to the free energy is

α̃2

(R
ε

)2
+ α̃0 + β2(mR)2 .

Thus 3 derivatives w.r.t. mR eliminate the ambiguity.

For nonsupersymmetric theories the 5th derivative of FS4 w.r.t. mR is
universal.
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