
 
CQ Center for Quantum Science Department of Physics 

József Fortágh       02.06.15    

Interfacing cold atoms and superconductors 

József Fortágh  
 



Cold atom – solid state interface 

Surface (room temperature or 4K) 

atom cloud N ~ 104 
T ~ down to 10nK 

separation:   
down to microns 

 

Coherent coupling between 
atoms and solid state devices ? 

Measure and control interactions 

p ~ 10-11 mbar 
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Rubidium ground state Zeeman splitting 

87Rb, 5S1/2, I=3/2 
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Larmor frequency:  
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József Fortágh, Universität Tübingen  
Magnetic microtraps 

Sukumar and Brink, PRA 56, 2451 (1997)  

Majorana spin-flip transitions: 
Strong suppression of  

Review:  “Magnetic microtraps for ultracold atoms”, Fortagh & Zimmermann, Rev. Mod. Phys. 79, 235 (2007) 

Harmonic potential (Ioffe-Pritchard trap) 

Wire trap 



3D nanopositioning  

positioning accuracy < ±250 nm  velocity uncertainty Δv < ±25 µm/s 

Gierling et al., Nat. Nanotechnol. 6, 445-451 (2011) 

Nanopositioning atomic clouds 

5 | József Fortágh – Interfacing cold atoms and nanostructures  © 2015 University of Tübingen 



interaction zone loading transport interaction zone 

Nano-positioning of atomic clouds on a chip 

positioning accuracy < ±250 nm  velocity uncertainty Δv < ±25 µm/s 

Gierling et al., Nat. Nanotechnol. 6, 445-451 (2011) 
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Scanning a BEC above the surface 

Trap frequencies (ωr, ωa) = 2 π × (81, 17) 1/s 

SEM image Atomic cloud & scan direction 

single CNT 

lines of nanotubes 
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Gierling et al., Nat. Nano. 6, 445-451 (2011) 
Schneeweiss et al., Nat. Nano 7, 515-519 (2012) 
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BEC oscillating above the surface 

Measured force between nanotube tip and an atom in the trap: yNN 2.0102 25 ≅× −

Gierling et al., Nat. Nano. 6, 445-451 (2011) Harber et al., PRA 72, 033610 (2005) 
Obrecht et al., PRL 98, 063201 (2007) Schneeweiss et al., Nat. Nano 7, 515-519 (2012) 



One meaurement point: few seconds 
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One point in <1 ms, full curve: few seconds 

Absorption imaging 

��������� 	
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atomic cloud image 

Single atom detection 
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Stibor et al., New J. Phys. 12, 065034 (2010)  



Quantum galvanometer / spectrum analyzer 

Quantum galvanometer:  
Kálmán et al., Nano Letters 12, 435-439 (2013)  

Single atom detector:  
Stibor et al., New J. Phys. 12, 065034 (2010)  

Magneto-mechanical interface between atoms and a vibrating nanowire. 

Parametric drive of mechanic oscillations by the BEC:  
Darázs et al., Phys. Rev. Lett. 112, 133603 (2014) 

Quantum noise of 
electric currents? 

Quantum drive of 
mechanical vibrations? 



Coupling superconducting devices and atomic gases 

via superconducting-coplanar-waveguide resonators operating in the microwave regime 

• K. Tordrup and K. Molmer, PRA  77 
 020301(R) (2008) 

Proposals for quantum information processing 

• Henschel et al., PRA 82, 033810 (2010) 
• Verdú et al., PRL 103, 043603 (2009) 
• Petrosyan and Fleischhauer,  
 PRL 100, 170501 (2008) 

• Petrosyan et al., 
 Phys. Rev. A 79, 040304 (2009)  

• Rabl et al., PRL 97, 033003 (2006) 
• Sorensen et al.,  
 PRL 92, 063601 (2004) 

The list is growing… 
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Cano et al., Eur. Phys. J. D 63, 17-23 (2011) 

Cold atoms & superconductors 

20 mm 
P ~ 10-11 mbar 

2D-MOT 
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Cold atoms on the SC chip 

Chip surface 

TOF NC≈106   in the F=1 or F=2 hyperfine state 

Bernon et al., Nat. Commun. 4, 2380 (2013) 
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Trapping atoms at the superconducting 
microwave cavity 

Bernon et al., Nat. Commun. 4, 2380 (2013) 
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Persistent current trap 

λ/4 cavity structure!



Atomic coherence at the superconducting 
coplanar cavity structure 

|0⇥ � 1⇤
2

(|0⇥+ |1⇥)

Time evolution 

Coherence ? 
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Atomic coherence on a SC chip 
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Breit Rabi differential shift

At 500 nK: differential shift < 1 Hz 

D.M. Harber et al  Phys. Rev. A 66, 053616 (2002)!
P. Treutlein et al Phys. Rev. Lett. 92, 203005 (2004) !

gF = �1/2

gF = 1/2
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Atomic coherence on a SC chip 

|0⇥ � 1⇤
2

(|0⇥+ |1⇥)    Coherence ? 

Ramsey interferometry 
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Ramsey interferometer 
⇡

2
⇡

2TR

Long coherence time > 2 s !! 

Parameters: 

⇥l/2� ⇡ 20 Hz
⇥r/2� ⇡ 180 Hz

n ⇡ 1013 at.cm�3

�/2� = 900 kHz

�R/2� = 400 Hz

Atomic cloud 

z0 ⇡ 60 µm

Rabi frequency 

Two photons detuning 

Single photon detuning 

�/2⇥ = 5.5Hz

Nat ⇡ 3⇥ 104

Interefometer 
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Atomic coherence on a SC chip 
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Coherence and stability of operation 
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Ramsey fringes, Frequency: 5.515 Hz, Decay: 9.607 s

Coherence time 
Stability is limited on long time scales by atom 
number fluctuation (air conditioning) and the 
stability of the quarz oscillator: no long term ref. 

Allan deviation 
1.6 × 10-12 @ 30 s;   5 × 10-13 @ 200 s 

T2 ≈ 20 s"
Expected due to residual frequency 
inhomogenity in the trap T2 ≈ 6.5 s"
Identical spin rotation effect 
synchronizes the clock 
C. Deutsch et al Phys. Rev. Lett. 105, 020401 (2010)!

Bernon et al., Nat. Commun. 4, 2380 (2013) 



The differential Zeeman shift and magnetic field 
fluctuations limit the clock coherence 
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L. A. Jones, J. D. Carter, and J. D. D. Martin 
Phys. Rev. A 87, 023423 (2013) 

Zanon-Willette, de Clercq, Arimondo 
Phys. Rev. Lett. 109, 223003 (2012) 
 

O. Zobay and B. M. Garraway 
Phys. Rev. Lett. 86, 1195 (2001)  



Dressing the clock transition 

SÁRKÁNY, WEISS, HATTERMANN, AND FORTÁGH PHYSICAL REVIEW A 90, 053416 (2014)
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FIG. 1. (Color online) (a) Ground-state hyperfine structure and Zeeman sublevels of 87Rb in a magnetic field. A microwave field of
frequency ωdress and Rabi frequency "dress is used for dressing the clock transition. (b) The atomic transition is probed by means of Ramsey
interferometry. A two-photon pulse with ωMW ≈ 6.833 GHz and ωRF ≈ 2 MHz is used to drive the transition. (c) Schematic of the experimental
sequence. A π/2 pulse is used to prepare the atoms in a superposition state 1/

√
2 × (|0⟩ + |1⟩). After a variable hold time TRamsey, the

interferometer is closed by the application of a second π/2 pulse and the population of the two states, oscillating with frequency δ, is measured.
The dressing field is left on throughout the interferometer sequence.

and

E1/! = µ2B + 3βB2 + ω0, (2)

where µ1 = 2π × 702.37 kHz/G, µ2 = 2π × 699.58 kHz/G,
β = 2π × 71.89 Hz/G2, and ω0 = 2π × 6.8346826109 GHz
[41] is the frequency difference of the two states in the absence
of any fields. The energy difference between the two levels can
be expressed by

&E0,1/! = 6β(B − B0)2 + 2π × 6.8346781136 GHz, (3)

where B0 ≈ 3.229 G is the so-called magic offset field [42].
Using microwave dressing of the Zeeman sublevels with an
appropriate frequency ωdress and Rabi frequency "dress, the
second-order Zeeman shift can be compensated for.

The microwave field leads to a correction of the form

&Edress,i = !
∑

i,α

"2
i,α

&i,α

(4)

for both of the states i, where α = σ+,σ−,π denotes all the
possible polarizations of the dressing field, for which the
relevant detuning &α and Rabi frequency "α need to be
taken into account for each. If we consider a microwave field
Bdress cos(ωdresst), which is linearly polarized perpendicular to
the quantization axis (given by the magnetic offset field), the
situation is simplified, as we only need to take into account σ+
and σ− transitions, as sketched in Fig. 1(a). In the rotating-wave
approximation, the Hamiltonian relevant for the two states is

H0 = !

⎡

⎢⎣
0

√
3"dress

1√
2
"dress√

3"dress −&1 0
1√
2
"dress 0 −&2

⎤

⎥⎦ (5)

and

H1 = !

⎡

⎣ 0
√

3
2"dress√

3
2"dress −&3

⎤

⎦ , (6)

where we have defined "dress as state-independent Rabi
frequency

"dress = 1

2
√

2!
µB gF |Bdress|, (7)

and the values of the detunings in Eqs. (5) and (6) and Fig. 1(a)
are given by

&1 = &dress + (µ1 + 2µ2)B − 3βB2, (8)

&2 = &dress + µ1B − 7βB2, (9)

&3 = &dress − µ2B − 7βB2, (10)

where &dress = ωdress − ω0. With this notation, we can write
the frequency difference between the two states as

&E0,1/! = ω0 + (µ2 − µ1)B + 6βB2 + · · ·

+"2
dress

(
3

&1(B)
+ 1/2

&2(B)
− 3/2

&3(B)

)
. (11)

For a given offset field, it is now possible to find numerical
solutions ωdress and "dress for which the first and second
derivatives of Eq. (11) with respect to B disappear; i.e., the
Zeeman shift of the transitions around that offset field is
canceled up to second order. This is illustrated in Fig. 2, where
the frequency difference is plotted as a function of the magnetic
field for different values of the center of the plateau, Bcenter.
For each curve, different optimized values for ωdress and "dress
were calculated. The choice of Bcenter is completely arbitrary
within the limits of Rabi frequencies "dress that are achievable
in experimental conditions.

053416-2

Dressing field with perpendicular 
polarisation to the magnetic field at 
the trap centre (quantisation axis). 

Sárkány et al., PRA 90, 053416 (2014) 



Dressing the clock transition 

Sárkány et al., PRA 90, 053416 (2014) 



Dressed clock 

Sárkány et al., PRA 90, 053416 (2014) 

For any offset field 
the differential shift 
can be modified: 
-  suppressed  
-  enhanced 
-  structurred. 



Ramsey interferometry with MW dressing 

Sárkány et al., PRA 90, 053416 (2014) 



MW-control of the differential shift 

width (0.1 Hz): ~100 mG 

Ω0 = 2π × 20.1 kHz 

Bcenter = 2.65 G 

Δ dress= - 2π × 1.19 MHz 

The the first and second 
order differential Zeeman-
shifts are suppressed. 

Sárkány et al., PRA 90, 053416 (2014) 
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FIG. 2. (Color online) Calculated frequency difference of the
clock transition as a function of the magnetic field. The Breit-Rabi
parabola for the case without the dressing field is plotted in red.
The three black curves show the cancellation of the Boff dependence
around three different central values Bcenter. For an arbitrary value of
Bcenter, the optimal detuning and Rabi frequency can be calculated.

III. EXPERIMENTAL PROCEDURE

The measurements are taken with atomic clouds mag-
netically trapped on a superconducting atom chip. Atoms
are loaded into this trap as follows [15]: an ensemble of
ultracold 87Rb atoms is prepared in a magneto-optical trap and
subsequently transferred into an Ioffe-Pritchard-type magnetic
trap situated in the room-temperature environment of our
setup [43]. The atomic cloud is cooled by forced radio-
frequency evaporation and then loaded into an optical dipole
trap used to transport the ensemble to a position below the
superconducting atom chip at 4.2 K. We load an ensemble of
∼1 × 106 atoms at a temperature of ∼1 µK into the magnetic
chip trap, which is based on a Z-wire geometry [23]. The
oscillation frequencies in the trap are given by ωx = 2π ×
30 s−1, ωy = 2π × 158 s−1, and ωz = 2π × 155 s−1, and the
offset field Boff , which defines the quantization axis, is pointing
along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of

√
6$0,σ+/$0,σ− ≈ 0.81, while for a linear (circular)

polarization the expected ratio would be 1 (0). The factor
√

6
stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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FIG. 3. (Color online) Measurement of the differential Zeeman
shift between the states |0⟩ and |1⟩ for different Rabi frequencies.
The frequency zero point was set to the frequency at the magic
offset field without dressing. For a Rabi frequency $dress = $0 =
2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
Bcenter = 2.65 G. Inset: Detail of the curve with $dress = 0.99$0. We
estimate a measurement error of ±5 Hz resulting from fluctuations
of the MW power. The theory curve (solid red line) is plotted along
a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.
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Bcenter, the optimal detuning and Rabi frequency can be calculated.
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The measurements are taken with atomic clouds mag-
netically trapped on a superconducting atom chip. Atoms
are loaded into this trap as follows [15]: an ensemble of
ultracold 87Rb atoms is prepared in a magneto-optical trap and
subsequently transferred into an Ioffe-Pritchard-type magnetic
trap situated in the room-temperature environment of our
setup [43]. The atomic cloud is cooled by forced radio-
frequency evaporation and then loaded into an optical dipole
trap used to transport the ensemble to a position below the
superconducting atom chip at 4.2 K. We load an ensemble of
∼1 × 106 atoms at a temperature of ∼1 µK into the magnetic
chip trap, which is based on a Z-wire geometry [23]. The
oscillation frequencies in the trap are given by ωx = 2π ×
30 s−1, ωy = 2π × 158 s−1, and ωz = 2π × 155 s−1, and the
offset field Boff , which defines the quantization axis, is pointing
along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of

√
6$0,σ+/$0,σ− ≈ 0.81, while for a linear (circular)

polarization the expected ratio would be 1 (0). The factor
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stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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FIG. 3. (Color online) Measurement of the differential Zeeman
shift between the states |0⟩ and |1⟩ for different Rabi frequencies.
The frequency zero point was set to the frequency at the magic
offset field without dressing. For a Rabi frequency $dress = $0 =
2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
Bcenter = 2.65 G. Inset: Detail of the curve with $dress = 0.99$0. We
estimate a measurement error of ±5 Hz resulting from fluctuations
of the MW power. The theory curve (solid red line) is plotted along
a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.
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III. EXPERIMENTAL PROCEDURE

The measurements are taken with atomic clouds mag-
netically trapped on a superconducting atom chip. Atoms
are loaded into this trap as follows [15]: an ensemble of
ultracold 87Rb atoms is prepared in a magneto-optical trap and
subsequently transferred into an Ioffe-Pritchard-type magnetic
trap situated in the room-temperature environment of our
setup [43]. The atomic cloud is cooled by forced radio-
frequency evaporation and then loaded into an optical dipole
trap used to transport the ensemble to a position below the
superconducting atom chip at 4.2 K. We load an ensemble of
∼1 × 106 atoms at a temperature of ∼1 µK into the magnetic
chip trap, which is based on a Z-wire geometry [23]. The
oscillation frequencies in the trap are given by ωx = 2π ×
30 s−1, ωy = 2π × 158 s−1, and ωz = 2π × 155 s−1, and the
offset field Boff , which defines the quantization axis, is pointing
along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of

√
6$0,σ+/$0,σ− ≈ 0.81, while for a linear (circular)

polarization the expected ratio would be 1 (0). The factor
√

6
stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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FIG. 3. (Color online) Measurement of the differential Zeeman
shift between the states |0⟩ and |1⟩ for different Rabi frequencies.
The frequency zero point was set to the frequency at the magic
offset field without dressing. For a Rabi frequency $dress = $0 =
2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
Bcenter = 2.65 G. Inset: Detail of the curve with $dress = 0.99$0. We
estimate a measurement error of ±5 Hz resulting from fluctuations
of the MW power. The theory curve (solid red line) is plotted along
a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.
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The measurements are taken with atomic clouds mag-
netically trapped on a superconducting atom chip. Atoms
are loaded into this trap as follows [15]: an ensemble of
ultracold 87Rb atoms is prepared in a magneto-optical trap and
subsequently transferred into an Ioffe-Pritchard-type magnetic
trap situated in the room-temperature environment of our
setup [43]. The atomic cloud is cooled by forced radio-
frequency evaporation and then loaded into an optical dipole
trap used to transport the ensemble to a position below the
superconducting atom chip at 4.2 K. We load an ensemble of
∼1 × 106 atoms at a temperature of ∼1 µK into the magnetic
chip trap, which is based on a Z-wire geometry [23]. The
oscillation frequencies in the trap are given by ωx = 2π ×
30 s−1, ωy = 2π × 158 s−1, and ωz = 2π × 155 s−1, and the
offset field Boff , which defines the quantization axis, is pointing
along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of

√
6$0,σ+/$0,σ− ≈ 0.81, while for a linear (circular)

polarization the expected ratio would be 1 (0). The factor
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stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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FIG. 3. (Color online) Measurement of the differential Zeeman
shift between the states |0⟩ and |1⟩ for different Rabi frequencies.
The frequency zero point was set to the frequency at the magic
offset field without dressing. For a Rabi frequency $dress = $0 =
2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
Bcenter = 2.65 G. Inset: Detail of the curve with $dress = 0.99$0. We
estimate a measurement error of ±5 Hz resulting from fluctuations
of the MW power. The theory curve (solid red line) is plotted along
a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.
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The measurements are taken with atomic clouds mag-
netically trapped on a superconducting atom chip. Atoms
are loaded into this trap as follows [15]: an ensemble of
ultracold 87Rb atoms is prepared in a magneto-optical trap and
subsequently transferred into an Ioffe-Pritchard-type magnetic
trap situated in the room-temperature environment of our
setup [43]. The atomic cloud is cooled by forced radio-
frequency evaporation and then loaded into an optical dipole
trap used to transport the ensemble to a position below the
superconducting atom chip at 4.2 K. We load an ensemble of
∼1 × 106 atoms at a temperature of ∼1 µK into the magnetic
chip trap, which is based on a Z-wire geometry [23]. The
oscillation frequencies in the trap are given by ωx = 2π ×
30 s−1, ωy = 2π × 158 s−1, and ωz = 2π × 155 s−1, and the
offset field Boff , which defines the quantization axis, is pointing
along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of
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6$0,σ+/$0,σ− ≈ 0.81, while for a linear (circular)

polarization the expected ratio would be 1 (0). The factor
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stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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FIG. 3. (Color online) Measurement of the differential Zeeman
shift between the states |0⟩ and |1⟩ for different Rabi frequencies.
The frequency zero point was set to the frequency at the magic
offset field without dressing. For a Rabi frequency $dress = $0 =
2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
Bcenter = 2.65 G. Inset: Detail of the curve with $dress = 0.99$0. We
estimate a measurement error of ±5 Hz resulting from fluctuations
of the MW power. The theory curve (solid red line) is plotted along
a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.
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FIG. 4. (Color online) Frequency difference of the clock transi-
tion as a function of the Rabi frequency of the dressing for different
magnetic fields. The data was extracted from the measurements in
Fig. 3. Inset: Frequency difference for different offset fields with
respect to the measurements at Boff = 2.72 G as a function of the
Rabi frequency. At the optimal Rabi frequency !0, the three curves
show nearly identical frequencies, proving the cancellation of the
differential Zeeman shift up to second order.

ωRF + ωMW fixed. The measurement without dressing field
yields the expected Breit-Rabi parabola which we use to
calibrate the magnetic field Boff .

For the cancellation of the magnetic-field dependence, a
magnetic offset field Boff = 2.65 G was chosen. For this Boff ,
we calculated the optimum detuning #dress and Rabi frequency
!dress for the measured ratio between σ+ and σ− transition
strengths. We measure δ vs Boff in the range 2.1–3.8 G for Rabi
frequencies in the range of 2π × 12 to 2π × 25 kHz with a
calculated optimal Rabi frequency !0 = 2π × 20.1 kHz. The
results of these measurements are plotted in Fig. 3 along with
the results of the analytical calculations, taking into account
the measured imbalance in the Rabi frequency. The theory
lines are obtained by leaving the Rabi frequency as a free
parameter in one of the curves and scaling the other curves
according to the MW power applied in the experiment. The
data demonstrate the compensation of the differential Zeeman
shift around the field value of Bcenter = 2.65 G.

The reduced sensitivity of the clock transition to magnetic-
field variations is shown in Fig. 4. Here we plot the measured
frequencies and the theory curves for three different offset
fields as a function of the Rabi frequency, as extracted from
the values in Fig. 3. For the optimum Rabi frequency !0,
all three curves show the same ac Zeeman shift. The inset
in Fig. 4 shows the frequency difference between the curves
measured for the three offset fields with respect to the value
Boff = 2.72 G. The three curves cross nearly at the same point,
showing the strong suppression of the differential Zeeman
shift over a field range larger than 0.2 G. The analysis of the
theory curves in Fig. 3 shows that it is possible to generate
plateaus where the frequency differs by less than 0.1 Hz over a
magnetic-field range of more than 100 mG. As is visible in the
inset of Fig. 3, the measurement does not reach this accuracy.
We estimate a frequency uncertainty of ±5 Hz, based on the
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FIG. 5. (Color online) Double magic dressing of the atomic-
clock transition, for which the dependence of the frequency on both
the magnetic field and the Rabi frequency disappears around a field
value of Bcenter = 2.59 G. The calculation assumes a Rabi-frequency
imbalance of

√
6!0,σ+/!0,σ− = 1.25, and the obtained optimal

parameters are !0 = 2π × 86.7 kHz, #dress = −2π × 309 kHz.

limited time between the Ramsey pulses and the uncertainty
of the unstabilized microwave power.

The stability of the microwave Rabi frequency is expected
to be the strongest limitation on the frequency stability. In
order to reach the 0.1-Hz range at the field point of 2.65 G,
a power stability on the order of #!dress/!dress ∼ 1 × 10−4

would be required. For certain offset fields, however, it is
possible to find solutions for Eq. (11) where both the B-field
dependency as well as the dependency on the Rabi frequency
!dress disappear. An example for such a solution can be seen
in Fig. 5: Here, we calculate that the transition frequency
varies by less than ±0.1 Hz over a range of 100 mG around
Bcenter = 2.59 G. At the center of the plateau, the frequency
δ becomes independent of the Rabi frequency for a detuning
of #dress = −2π × 309 kHz. In a range of ±10 mG around
Bcenter, a Rabi-frequency stabilization on the order of 1% would
be sufficient to reach a level of 0.1-Hz stability. Such double
magic dressing enables the employment of this technique
with on-chip microwave devices, where Rabi frequencies are
inversely proportional to the distance to the chip.

Manipulation of the differential Zeeman shift can be used
to decrease the frequency spread over the size of the cloud.
For a cloud of N = 5 × 104 atoms at T = 250 nK and Boff =
2.65 G, the standard deviation of the frequency distribution due
to the inhomogeneity of the magnetic field without dressing
is on the order of σinh ≈ 4 Hz, about an order of magnitude
larger than the spread σdens caused by the inhomogeneous
mean-field interaction due to the density distribution in the
trap [12]. Microwave dressing can be employed to decrease
σinh to a level on the order of σdens, thereby balancing the two
effects and leading to a nearly homogeneous frequency over
the size of the cloud. For the parameters above and our trap, we
calculate that the differential Zeeman shift can be engineered
to cancel the collisional frequency shift down to a level of
σ ≈ 2π × 0.25 Hz.
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For certain offset fields the differential shift becomes independent also from 
the microwave power. 

These “double magic points” 
are the preferable working points 
of trapped atomic clocks and 
quantum memories. 
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an algorithm which identifies the electrostatic fields that best
fit the measured data. As shown in Fig. 2(c), the results
for the three different |mJ | states lie on the same curve,
confirming the validity of our procedure. The shifts of the
Rydberg states are thus explained by static electric fields alone.
The decay of the electrostatic field is modeled here with an
exponential function: E(z) = E0 exp(−z/σ ) + Eres, where z
is the distance to the surface, σ is the decay length, and Eres
is a residual, homogeneous electrostatic field that accounts
for possible external field sources. Figure 2(c) shows the
best-fit fields calculated with the three experimental curves of
Fig. 2(b). We repeated our measurements on S and D Rydberg
states with principal quantum numbers n between 31 and 48
that reproduce the same behavior. For distances smaller than
30 µm, the electrostatic field cannot be determined reliably,
as high field gradients over the size of one pixel of the camera
(5.6 µm in the object plane) lead to blurring of the measured
line shifts. We note that the electric field is also inhomogeneous
along the x axis. This is a result of the Gaussian distribution of
the atomic clouds dropped onto the surface and of the residual
roughness of the copper. In order to facilitate the evaluation of
the changes of the field with time, all the measurements have
been evaluated along the same line, as indicated in Fig. 2(a).

III. TEMPORAL EVOLUTION OF THE ELECTROSTATIC
FIELDS OF DEPOSITED ADATOMS

We evaluate the evolution of the electrostatic field close
to the surface as atom clouds are repeatedly deposited on
it. Figure 3 summarizes the results. The diagram shows the
electric field as a function of the distance from the surface
and the number of deposited atomic clouds. Different colors
correspond to different strengths of the electric field. The red
(solid) lines are exponential fits that we use for determining
the electric field as in Sec. II. The inset shows the increase of
the measured electric field with the number of deposited atoms

FIG. 3. (Color online) Measured electrostatic field as a function
of z and the number of experimental cycles carried out. Inset:
Measured electrostatic field at a distance of 80 µm from the surface.
We observe an increase of the electric field due to adsorption of
rubidium onto the copper surface. The saturation builds up after the
deposition of few thousand atomic clouds.

for a distance of 80 µm from the surface. The magnitude of the
field increases with the number of experimental runs. However,
we observe a saturation after about ten days of experiments
during which we released approximately 5 × 109 atoms on the
copper surface. Based on our measurements, we estimate that
it takes as little as few hundred experimental runs to produce
an electric field of 1 V/cm at a distance of 30 µm, assuming
a zero-field at the beginning of the experiments. This field
produces a level shift of −2 MHz on the 35S1/2 state and of
−49 MHz on the 55S1/2 state. This is much larger than the
linewidth of a high-Q stripline resonator, making cavity QED
experiments problematic by shifting the atoms out of the cavity
resonance.

IV. CONCLUSION

Our measurements show that neutral atoms adsorbed on a
metal surface cause electrostatic fields on the order of 1 V/cm
after as little as 100 repetitions of a cold atom experimental
cycle. Adsorbate fields have also been observed on dielectric
surfaces [18]. This sets serious limitations on the feasibility
of cavity QED experiments with Rydberg atoms and coplanar
cavities. Also dispersion forces between Rydberg atoms and
planar surfaces [19] are masked by the strong electric fields of
adsorbates. A search for strategies to correct for this problem
is therefore very important for atom chips. A possible solution
could be the cleaning of the surface whenever the electrostatic
fields due to adsorbates become harmful. For example, regular
heating of the surface cause adsorbed atoms to diffuse. Another
possibility would be photodissorption of the adsorbed atoms,
but given the work function of metals, this would require
light in the far ultraviolet range. Given the fast appearance
of detrimental adsorbate fields, an open question is still if
there are cleaning techniques which can be applied quickly
between experimental cycles. A workaround for this problem
would be the development of experimental techniques that
avoid deposition of atoms onto the surface or using surface
coatings with materials on which no adsorbate fields have
been observed [14]. While atoms on surfaces have undesired
effects on cold atom experiments, it is worth mentioning that
adatoms may be useful to control electric properties of surface
layers. For example, alkali-metal adsorbates have been used
to engineer the electronic structure of graphene [20,21].

Rydberg EIT can be used for a sensitive measurement of
electric fields. In combination with micropositioning of atomic
clouds by optical tweezers or magnetic conveyor belts in a
scanning probe configuration [22] three-dimensional imaging
of the electric field distribution is feasible. However, the
measurement technique contaminates the surface, which must
be taken into account.
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Baden-Württemberg-Stiftung through the “Kompetenznetz
Funktionelle Nanostrukturen.”

022511-3

Hattermann et al, Phys. Rev. A 86, 022511 (2012) 

Hattermann et al,  
Phys. Rev. A 86, 022511 (2012) 

Inversion of the electric field when cooling the chip to cryogenic temperatures: 
Chan, Siercke, Hufnagel, Dumke, PRL 112, 026101 (2014) 



ring radius 10µm 

one flux quantum 
 
 
B=67mG 
applied field  

34 | József Fortágh – Cold atoms & superconductors  © 2014 University of Tübingen 

100 µm 

Quantized flux in a superconducting ring 
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2

y direction. The niobium film has a thickness of d =
500 nm. The superconducting atom chip [5] is attached
to the cold finger of a helium flow cryostat at T = 4.2K.
The atoms are prepared in the absolute ground state
5S

1/2

F = 1,m
F

= �1 in a room temperature part of
the setup. From there they are transported to a position
below the superconducting chip by means of optical
tweezers. Details on the cold atom preparation and the
transfer to the cold region can be found in [36].
The microtrap is realized by the superposition of the
fields generated by a current in the trapping wire and a
homogeneous external bias field. Into this superconduct-
ing microtrap formed 400 m above the chip surface,
an ensemble of N ⇠ 1.5 ⇥ 106 atoms at T

atom

⇠ 1 K
is loaded from the optical tweezers. After adiabatic
compression, the cloud is evaporatively cooled to achieve
either a thermal cloud or a nearly pure Bose-Einstein
condensate (BEC) [5]. The ensemble is then mag-
netically transported to a position ⇠ 18 m above a
superconducting ring by rotating the external bias field
~

B

bias

around the x axis (Fig.1(b)) and adjusting the
current in the wire. The longitudinal position of the
cloud is controlled by an additional field ~

B

conf

created
by electromagnets below the sapphire substrate

The macroscopic superconducting ring shows quan-
tum behavior that we investigate with the cold atomic
cloud. In the superconducting state the so-called fluxoid
is quantized [37],
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This follows from the fact that superconductivity is
a macroscopic quantum phenomenon described by a
macroscopic wavefunction  . The single-valuedness of
the wavefunction requires that any closed integral over
the wave vector is a multiple of 2⇡. Here, �

0

= h/2e
is the magnetic flux quantum and the right hand side
needs to be evaluated along a closed contour located in-
side the superconductor. �

L

(⇠ 80 nm for Nb) is the
London penetration depth, ~j is the supercurrent density
and � is the total magnetic flux through the closed con-
tour. If the superconductor is thick compared to �

L

,
which is the case for our geometry at temperatures well
below T

c

, the integral over ~j can be neglected. Then, �
is quantized in multiples of �

0

.
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A, and the flux LJ created by supercurrents
J circulating around the ring
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Here, L is the inductance of the ring and ~

B

a

is the mag-
netic field applied to the ring during cooling. After cool-
ing through T

c

the value of n is defined.
Using �

0

= �B

freeze
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i

r

o

[38], we find that for our ge-
ometry di↵erences �B

freeze

of about 66.5mG change the
flux in the ring by 1�

0

. Having turned o↵ ~

B

freeze

, the
(quantized) flux through the ring is carried by the in-
duced circulating current J

ind

. In general, the trapping
fields create additional flux through the ring which is
compensated by currents J

trap

, so that the total current
is J = J

ind

+ J

trap

.

The magnetic (dipole) field ~

B

ring

created by currents J

contributes to the magnetic trapping potential for the
atoms. The magnetic fields ~

B

ring

in the vicinity of the
structure locally modifies the magnitude of the field along
the longitudinal axis x as well as in direction of the bias
field. To estimate this contribution and its impact on the
trapping potential, let us consider a cigar-shaped har-
monic trap with oscillation frequencies !

x

⌧ !

y,z

, whose
radial axis y is centered above the ring and whose size is
on the order of the ring size. The o↵set field B

x

at the
minimum of the trap is considered to point along the lon-
gitudinal trap axis. The x-component of ~

B

ring

increases
B

x

on one side of the ring and reduces it on the other
(Fig. 2(a)). If the elongation of the cloud in the longi-
tudinal axis is larger than the ring diameter, one ends
up with an asymmetric double well potential for the cold
atom cloud (Fig.2(c)). Hence, if the unperturbed har-
monic trap is centered above the ring, ~

B

ring

leads to a
position shift of the minimum of the magnetic trapping
potential in the longitudinal axis on the order of the ra-
dius of the ring. In addition, the part over the ring (dim-
ple) is more shifted towards the surface with increasing
number of flux quanta in the ring and the barrier height
of the potential towards the surface gets reduced.

Assuming the ring to be in the Meissner state, we cal-
culate the inductance L ⇡ 39 pH of the ring and a ring
current of J ⇡ 53 A producing a flux of 1�

0

. We have
numerically calculated the field distribution composed of
the ring field and the trapping field. We used the method
described in [39] for the simulation of the supercurrent
densities in the trapping wire and the ring and calculate
the ring field using Biot-Savart’s law. We find that for
1�

0

the ring field yields to a field shift of ⇠ 3mG at the
position of the atom cloud and for that a shift in the
trap depth at the position of the dimple on the order of
50 nK, as compared to the unperturbed harmonic trap
(Fig.2(c)).

Furthermore, the alteration of the potential landscape
caused by the circular supercurrents leads to a change of
the depth of the dimple and for that the the longitudinal
center-of-mass oscillation frequency of the trap depends
on the number of flux quanta in the ring. We calculated
the trap frequencies in the dimple and in the residual
harmonic trap from the trapping potential. This shift of
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Preparation of flux state: 
1.  apply field above Tc 
2.  cool below Tc 
3.  remove external field 
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Mapping the flux state of the ring to atomic clouds 3

(a)

(b)

(c)

FIG. 2: (a) Cut along the dashed line in Fig. 1(a) with
the principal vectorial magnetic x field components of
the trap and the ring in longitudinal direction. (b)

Isopotential plot of the calculated trapping potential for
4 flux quanta in the ring. An asymmetric potential with
two local minima is created, with the lower minimum
(dimple) above the ring structure (black marker on x

axis). Each contour line corresponds to an energy
change of 30 nK. (c) Cut along the longitudinal axis

(black line Fig. 3(a)) for calculated trap potential with
4 flux quanta in the ring (solid red) and the

unperturbed harmonic trap (dashed).

frequencies is much larger for the minimum in the dimple
(⇠ 10Hz) than for the residual harmonic trap (⇠ 1Hz).
The results of these calculations are in good agreement
with more complex simulations that we carried out with
3D-MLSI [40].
In the actual measurements we first prepare the flux

state of the ring by heating up the chip to a temperature
above T

c

and subsequently cool it to T = 4.2K in a ho-
mogeneous magnetic B

freeze

field applied perpendicular
to the surface. Measurements are repeated for di↵er-
ent fields applied during cooling, ranging from �500mG
to 500mG. The magnetic fields are calibrated by mi-

(a)

(b)

(c)

FIG. 3: (a) Measured integrated density profile for
di↵erent freezing fields. Each column represents the
integrated density profile averaged over 9 absorption
images. Adjacent points di↵er by 7mG in the field

applied during cooling. The split in the density profile
is due to the double well potential due to the ring field.

(b) Relative atom number of an ensemble trapped
above the superconducting ring, obtained by integrating
the density profile along the x axis shown in (a). The
mean atom number is calculated from 9 pictures per

freeze field applied during cooling. The dashed vertical
lines have a spacing (with error bars) of 65.9± 2.3mG
which is the measured value for one flux quantum. The
atom number is normalized to one. (c) Integrated trap
volume profile calculated from the trapping potential.
One can see the jump in the position of the dimple

when turning the direction of the flux.

crowave spectroscopy, i.e., the atoms are prepared in the
state F = 1,m

F

= �1 and the number of atoms in state
F = 2,m

F

= 0 is measured after application of a mi-
crowave pulse of variable frequency. Limited by fluctua-
tions of the magnetic field in the laboratory, the absolute
value of B

freeze

is known within ±5mG.

Total atom number after  
1s holding time 

Weiss et al., PRL 114, 113003 (2015) 
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Dipole oscillation frequency  
in the left well 

SQUID 

4

We prepare a thermal cloud of N ⇠ 2 ⇥ 105 atoms with
a temperature of ⇠ 250 nK above the trapping wire and
bring it close to the ring, where it is held for 1 s. For each
value of the freezing field we take nine absorption images
in situ by reflection imaging [41]. The imaging beam
points in the y direction, so we inherently integrate the
density along that axis. After averaging over the images
we further integrate the optical density along the z di-
rection to obtain a one dimensional profile of the atomic
cloud along the axis of weak confinement and strong im-
pact of the ring field x. In Fig. 3(a) the density pro-
files are plotted vs. B

freeze

. There are clearly noticeable
steps in the integrated density profile, occurring when the
number of flux quanta in the ring changes. It can also
be seen that for certain flux states, there are two distinct
density peaks which indicates the double well potential.
By further integration of the profiles shown in Fig. 3(a)
at fixed B

freeze

we obtain the atom number as a function
of B

freeze

. The atom number is normalized to the max-
imum number measured in the trap and plotted in Fig.
3(b). There are clearly visible equidistant steps, with a
width of �B

freeze

= 65.9± 2.3mG, indicated by the blue
vertical lines. The expected value of �B

freeze

= 66.5mG
per flux quantum, determined theoretically is well within
the error bars of the measurement. In Fig. 3(b) it is vis-
ible that we achieve single flux quanta resolution.
As visible in Fig. 3(b), the measurements are not sym-
metric around the value B

freeze

= 0. As the magnetic
trap is formed by highly inhomogeneous magnetic fields
which change directions around the trap, there is a net
flux through the ring depending on the position of the
harmonic trap which is compensated by additional cir-
culating screening currents in the ring. The screening
currents contribute to the trapping potential even for
B

freeze

= 0. Only if the sum of the fields perpendicular
to the chip produces the number of flux quanta frozen in
the ring during cooldown there is no net current around
the ring and only Meissner currents, which keep the su-
perconducting film itself field free, are present [39].
To quantify these e↵ects and its impact on the density
profile we have, as described above, considered a har-
monic magnetic trap placed in the vicinity of a flux
conserving ring and calculated the modification of the
trapping potential by the circulating current for di↵er-
ent numbers of flux quanta in the ring. We estimate the
density distribution in the trap by identifying all volume
elements in the simulation with a maximum energy of
300 nK. To compare the calculations with the observed
atomic profiles (Fig. 3(a)) we sum over the calculated
volume elements along the y and z directions and plot
the result vs. the number of frozen flux quanta. The
result is shown in Fig. 3(c) which closely resembles the
experimental data in Fig. 3(a). To estimate the trapped
atom number, analog to the measurement we additional
sum up the volume elements along the x direction. This
leads to the red dashed lines in Fig. 3(b) which match
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FIG. 4: Trapping frequencies measured for di↵erent
freezing fields. The dashed vertical lines indicate the

jump in the flux quanta. The black dots with errorbars
were obtained from the measurement. The dotted grey

lines are calculated values for di↵erent numbers of
frozen flux quanta.

the behavior of the measured atom number for di↵erent
numbers of flux quanta.
In order to obtain additional information on the number
of frozen flux quanta we performed a measurement of the
center-of-mass oscillation frequency of the trap above the
ring for various values of B

freeze

. For this, we prepared
a BEC to fill only the dimple part of the potential with
atoms, where we want to measure the trap frequency.
To measure the frequency, a center of mass oscillation
of the atoms along the longitudinal axis of the trap was
excited by displacing the minimum of the magnetic po-
tential. After a variable hold time (0 to 200ms) a mi-
crowave pulse was applied to transfer the atoms into the
untrapped F = 2,m

F

= 0 state and the position of the
cloud was measured after a time of flight of 12ms. The
oscillation frequency is extracted by fitting a sine func-
tion to the cloud position vs. hold time. The result of
this frequency analysis is depicted in Fig. 4 along with
the expected values extracted from our simulation of the
potential. The dashed vertical lines are based on a simi-
lar measurement of the atom number like in Fig. 3(b) and
show the expected value of the freezing field at which the
number of flux quanta changes.
In summary, we have demonstrated that a cold atomic
cloud of 87Rb atoms positioned above a superconducting
ring is sensitive to the magnetic field created by single
flux quanta. The modification of the cold atom trapping
potential by this field is detectable in two trap character-
istics, first in the trap depth and therefore in the atom
number of the ensemble and second in the trapping fre-
quency inside the created dimple trap.
This sensitivity enables the possibility for future exper-
iments which e.g. interface SQUIDs and cold atomic
clouds.
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