A Dynamical Theory of Superfluidity in One dimension

Miguel A. Cazalilla NTHU, Taiwan

Benasque, Atomtronics 2015

Superfluid ≠ Bose-Einstein Condensate (BEC)

 $\lim_{|\mathbf{r}-\mathbf{r}'|\to+\infty} \langle \Psi^{\dagger}(\mathbf{r})\Psi(\mathbf{r}')\rangle = |\Psi_0|^2 \neq 0$

Worth a Nobel Prize (2001)

But **BEC** is not the same as Superfluidity!! (but in 3D BEC and SF are intimately related...)

Landau's criterion

Consider a moving object:

Problem: How to define the SF properties at T > 0?

Fisher's criterion

Thermodynamics: Superfluidity = <u>non-vanishing</u> **Helicity Modulus**

Twisted BC's $\hat{\Psi}(x+L,y,z) = e^{i\varphi}\hat{\Psi}(x+L,y,z)$

$$\Upsilon(T) = \lim_{L \to +\infty} \frac{L}{S} \left(\frac{\partial^2 F(\varphi)}{\partial \varphi^2} \right) \Big|_{\varphi=0} \neq 0$$

ME Fisher et al PRA (1973)

Superfluid density: $\Upsilon(T) = \frac{\hbar^2 \rho_s(T)}{m}$

Interacting Bose fluids (BEC) in 2D Absence of BEC (T > 0) $\langle \Psi^{\dagger}(\mathbf{r})\Psi(\mathbf{r}')\rangle \sim |\mathbf{r} - \mathbf{r}'|^{-\frac{1}{2K(T)}} \rightarrow 0$

Superfluidity in 2D (Experiments)

2D⁴He films: Torsional oscillator measurements

Experiment: DJ Bishop & JD Reppy PRL (1978) <u>Theory:</u> Ambegaokar, Halperin, Nelson & Siggia PRL (1978)

Prof. Fisher meets One dimension

So what is the origin of this SF signal?

Specific Heat of a He-filled Nanopore

Finite intersect for $C/T \rightarrow 1D$ *Phonons*

Landau's criterion is violated in 1D

Support of the dynamic structure factor $S(k, \omega)$

Exact result for a 1D interacting Bose gas JS Caux and P Calabrese, PRA(R) (2006)

Laughlin's criterion

"Superfluidity?... it's like pornography I can't define it but I know it when I see it."

R. B. Laughlin in "Mesoscopic Protectorates", talk at KITP (2000)

Could it be a dynamical effect? Phase Slips

Thermal Phase Slips (from GL theory)

Langer-Ambegaokar PR (1967) McCumber-Halperin PR (1970)

Quantum Phase Slips: $\rho = \rho_0 + \delta \rho$ $S = \int dx d\tau [i\rho \partial_\tau \theta + \cdots] = \int dx [i\rho_0 \partial_\tau \theta + \cdots]$

Γ_{PS} should be very small at low temperatures but it is contradicted by the experiment!
J Taniguchi et al PRB 2010 Non-trivial Berry phase!

$$\Gamma_{\rm QPS} \sim e^{-\frac{\hbar \pi v \rho_0}{k_B T}}$$

Khlebnikov PRA (2005)

Torsional Oscillator (TO)

Modern torsional oscillator

(As devised by JD Reppy)

Andronikashvili's Experiment

(As suggested by Landau)

What is being probed by the TO?

T Eggel, <u>MAC</u> & M Oshikawa PRL 2011

 $\frac{\delta\omega(T)}{\delta Q^{-1}(T)} \Leftrightarrow \operatorname{Re} \chi_n(\omega_0; T)$ $\frac{\delta Q^{-1}(T)}{\delta Q^{-1}(T)} \Leftrightarrow \operatorname{Im} \left[-\chi_n(T; \omega_0)\right]$ $\omega_0 \approx 2000 \text{ Hz}$

Momentum Response in d = 1

$$\chi(x,t) = -\frac{i}{\hbar}\theta(t) \left\langle [\Pi(x,t),\Pi(0,0)] \right\rangle$$

Model for the nano-pore potential: Periodic potential

T Eggel, MAC & M Oshikawa PRL 2011

Harmonic Fluid Description

RG fixed point Hamiltonian (just phonons)

FDM Haldane PRL (1981 MAC et al RMP (2011)

$$H_* = \sum_{q \neq 0} \hbar v |q| b^{\dagger}(q) b(q) + \dots \frac{\hbar v}{2\pi} \int dx \left[K^{-1} \left(\partial_x \phi \right)^2 + K \left(\partial_x \theta \right)^2 \right] = \int dx \, \epsilon(x)$$

$$P = \sum_{q \neq 0} \hbar q \ b^{\dagger}(q) b(q) + \dots = \frac{\hbar}{\pi} \int dx \ \partial_x \phi \partial_x \theta = \frac{1}{v^2} \int dx \ j_{\epsilon}(x) \quad \propto \text{Energy current}$$

$$J = \frac{mvK}{\pi} \int dx \,\partial_x \theta(x,t) = \int dx \, j(x,t) \quad \text{Particle mass current}$$

Momentum current (including the leading irrelevant operator)

$$\Pi = J + \frac{vK}{v_F}P$$

J and P separately conserved by the fixed-point Hamiltonian

$$[H_*, \boldsymbol{J}] = [H_*, \boldsymbol{P}] = 0$$

Phase slips and Memory matrix

Phase Slips (for a periodic wall potential) Leading irr. operators

 $H_{PS} = \sum_{n>0,m} \frac{\hbar v g_{nm}}{\pi a_0^2} \int dx \cos\left(2n\phi(x) + \Delta k_{nm}x\right) \quad \frac{\Delta k_{mn}}{\Delta k_{mn}} = \left(2n\pi\rho_0 - 2mG\right)$

 $[H_{PS}, \boldsymbol{J}] \neq 0 \qquad [H_{PS}, \boldsymbol{P}] \neq 0$

J and P are coupled and acquire a finite decay rate

$$\chi(\omega;T) = \operatorname{Tr}\left\{V\left[\omega\mathbf{1} + iM(\omega;T)\right]^{-1}iM(\omega;T)\hat{\boldsymbol{\chi}}(T)\right\}$$
$$\hat{\boldsymbol{\chi}}(T) \simeq \operatorname{diag}\{\chi_{JJ}, \chi_{PP}(T)\} = -\operatorname{diag}\left\{\frac{M^2vK}{\hbar\pi}, \frac{\pi(k_BT)^2}{6\hbar v^3}\right\} + \cdots$$

 $M(\omega, T)$ is a 2 x 2 matrix whose eigenvalues are the current decay rates (it can be evaluated perturbatively in H_{PS})

Results

Luttinger parameter dependence (Compressibility \propto *K*)

Experiment: Frequency dependence

 $f_l = 500 \,\mathrm{Hz}$ $f_h = 2000 \,\mathrm{Hz}$

J Taniguchi et al PRB 2013

Conclusions (part I)

- The helicity modulus in 1D vanishes
- Superfluidity is a dynamical effect in 1D
- Importance of Phase slips
- Importance of coupling between particle and energy currents

Quantum Quenches: From the generalized Gibbs Ensemble to Prethermalization

Miguel A. Cazalilla NTHU, Taiwan.

Benasque, Atomtronics 2015

What Quadratic Hamiltonians can teach us about non-equilibrium

Miguel A. Cazalilla NTHU, Taiwan.

Why to bother with "boring" quadratic Hamiltonians?

RG Fixed-point Hamiltonians at Equilibrium

The Luttinger Model

Luttinger

Mattis & Lieb

[J. Math. Phys. (1965)]

Quasi-particle: Tomonaga bosons $H_{\rm LM} = \sum_{q \neq 0} \hbar v |q| b^{\dagger}(q) b(q)$

'Anomalous' commutation relations

$$[\rho_R(q), \rho_R(-q')] = \frac{qL}{2\pi} \delta_{q,q'}$$

One Dimension: The Tomonaga-Luttinger Liquid

Haldane

(There are more, but I simply couldn't fit in every one...)

Collective modes exhaust the low-energy spectrum

Power-law Momentum distribution

$$n(p) \sim \operatorname{sgn}(p - p_F) |p - p_F|^{\gamma_{eq}^2}$$

Fermi Liquid Theory

Landau Fermi Liquid

Quasi-particle Hamiltonian

Forward scattering interactions

$$H_{FL} = \sum_{\boldsymbol{k}} \epsilon(\boldsymbol{k}) q_{\boldsymbol{k}}^{\dagger} q_{\boldsymbol{k}} + \frac{1}{2V} \sum_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{p}} F_{\boldsymbol{p} \boldsymbol{k}}(\boldsymbol{q}) q_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} q_{\boldsymbol{p}-\boldsymbol{q}}^{\dagger} q_{\boldsymbol{p}} q_{\boldsymbol{k}}$$

Single Quasi-particle energy

Bosonization of the Fermi Surface

Haldane, Houghton & Marston Castro Neto & Fradkin, Kim & Wen & Lee, ...

$$\int_{\mathbf{T}} \mathbf{F}_{\mathbf{F}} \mathbf{F}_{\mathbf{F}} \mathbf{f}_{\mathbf{F}}(\mathbf{q}) \sim \sum_{\mathbf{k} \in \mathbf{S}} q_{\mathbf{k}+\mathbf{q}}^{\dagger} q_{\mathbf{k}}$$

$$\begin{bmatrix} J_{\mathbf{S}(\mathbf{q}), J_{\mathbf{T}}(\mathbf{p})} \end{bmatrix} = \delta_{\mathbf{S}, \mathbf{T}} \delta_{\mathbf{p}+\mathbf{q}, \mathbf{0}} \, \hat{\mathbf{n}}_{\mathbf{S}} \cdot \mathbf{q}$$

$$H = \frac{1}{2} \sum_{\mathbf{S}, \mathbf{T}} \left[\frac{v_F}{\Omega} \delta_{\mathbf{S}, \mathbf{T}} + \frac{F_{\mathbf{S}, \mathbf{T}}(\mathbf{q})}{V} \right] J_{\mathbf{T}}(\mathbf{q})$$
Forward Exchange Eigenmodes $H = \sum_{l, \mathbf{q}} \omega(\mathbf{q}) \alpha^{\dagger}(\mathbf{q}) \alpha_{l}(\mathbf{q})$

What can we learn about Non-Equilibrium from Quadratic models?

T Tinoshita et al Nature (2006)

Sudden Quantum Quenches

Some Important Questions

Does the system reach a steady state?

If so, what are its properties? Does it thermalize?

$$\bar{O} = \mathrm{Tr} \, \rho_{\mathrm{steady}} \hat{O},$$

 $\rho_{\mathrm{steady}} \propto e^{-H/T_{\mathrm{eff}}}$?

Quantum Quench in the LM

$$H_{\rm int} = 0 \longrightarrow H_{\rm int} \neq 0$$

Momentum distribution at time t :

MAC Phys Rev Lett (2006) A Iucci & MAC Phys Rev A (2009)

Does this work lattice models?

Where does the system go?

Non-equilibrium exponent : $\gamma > \gamma_{eq}$

The system does not thermalize! Why? Infinite number of conserved quantities!!

$$[H, I(q)] = 0 \qquad I(q) = b^{\dagger}(q)b(q)$$

The GGE Conjecture

M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL (2007)

Apply the Maximum Entropy Principle [E.T. Jaynes, PR (1957)]

$$\bar{O} = \lim_{t \to +\infty} \langle \Psi(t) | \hat{O} | \Psi(t) \rangle = \operatorname{Tr} \rho_{GGE} \hat{O},$$

$$\rho_{GGE} = \frac{e^{\sum_{k} \lambda_{k} I(k)}}{Z_{GGE}}, \quad \langle I(k) \rangle_{GGE} = \langle \Psi(t=0) | I(k) | \Psi(t=0) \rangle$$
Need Integrals of Motion $[H, I(k)] = 0$
Luttinger Model Integrals of Motion $I(k) = b^{\dagger}(k)b(k)$
But only O(N) integrals are needed!
MAC, A Iucci, MC Chung PRE (2012)

Experimental Observation of GGE

Sudden Splitting of a 1D Bose gas

Dynamics of the relative phase $C(x, x') = \langle e^{i\varphi(x)}e^{-i\varphi(x')} \rangle$

T Langren et al arxiv:1411.7185 (2014)

Pre-thermalization in d > 1?

Prethermalization [...] describes the very rapid establishment of [..] a kinetic temperature based on average kinetic energy [...] the occupation numbers of individual momentum modes still show strong deviations from the late-time Bose-Einstein or Fermi-Dirac distribution.

J Berges et al Phys Rev Lett 2004

Prethermalization in the Hubbard Model

M Moeckel & S Kehrein PRL (2006)

M Eckstein, M Kollar, & P Werner PRL (2009)

Prethermalization in the Hubbard Model (in infinite dimensions)

Double Occupancy

M Eckstein, M Kollar, & P Werner PRL (2009)

Discontinuity at k_F

Pre-thermalization in a 2D Fermi gas with long range interactions

Degenerate ¹⁶¹Dy Fermi gas M Lu et al Phys Rev Lett (2012)

K Aikawa et al Phys Rev Lett (2014)

Quench in a 2D interacting Fermi Gas

N Nessi, A Iucci & MAC, Phys. Rev. Lett (2014)

$$H_{\rm int} = 0 \longrightarrow H_{\rm int} \neq 0$$

Hamiltonian for $t \leq 0$ $H_0 = \sum_{k} \epsilon(k) c_k^{\dagger} c_k$

Hamiltonian for t > 0

$$H = H_0 + H_{\text{int}} = \sum_{\boldsymbol{k}} \epsilon(\boldsymbol{k}) c_{\boldsymbol{k}}^{\dagger} c_{\boldsymbol{k}} + \frac{1}{V} \sum_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}} f(\boldsymbol{q}) c_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} c_{\boldsymbol{p}-\boldsymbol{q}}^{\dagger} c_{\boldsymbol{p}} c_{\boldsymbol{k}}$$

Long-range (non-singular) interaction $q_c^{-1} \gg k_F^{-1}$

 $f(q) = f_0 F(q) \quad F(q \gg q_c) \sim e^{-q/q_c} \quad F(q = 0) = \text{const.}$

Pre-thermalization, perturbative? **YES!**

PT tells us there is a pre-thermalization plateau, but WHY?

Making an Interacting Gas Exactly Solvable

Hamiltonian for t > 0

Contains inelastic processes

$$H = H_0 + H_{\text{int}} = \sum_{\boldsymbol{k}} \epsilon(\boldsymbol{k}) c_{\boldsymbol{k}}^{\dagger} c_{\boldsymbol{k}} + \frac{1}{V} \sum_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}} f(\boldsymbol{q}) c_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} c_{\boldsymbol{p}-\boldsymbol{q}}^{\dagger} c_{\boldsymbol{p}} c_{\boldsymbol{k}}$$

Fermi-liquid-like truncation of the bare Hamiltonian

(= Neglect inelastic processes)

FS Bosonization
$$J_{\mathbf{S}}(\mathbf{q}) \sim \sum_{\mathbf{k} \in \mathbf{S}} c^{\dagger}_{\mathbf{k}+\mathbf{q}} c_{\mathbf{k}}$$

$$H = \frac{1}{2} \sum_{\mathbf{S}, \mathbf{T}, \mathbf{q}} J_{\mathbf{S}}(\mathbf{q}) \left(\frac{v_F}{\Omega} \delta_{\mathbf{S}, \mathbf{T}} + \frac{f(q)}{V} \right) J_{\mathbf{T}}(-\mathbf{q})$$

$$[J_{\boldsymbol{S}}(\boldsymbol{q}), J_{\boldsymbol{T}}(\boldsymbol{p})] = \delta_{\boldsymbol{S},\boldsymbol{T}} \delta_{\boldsymbol{q}+\boldsymbol{p}} \,\Omega \,\hat{\boldsymbol{n}}_{\boldsymbol{S}} \cdot \boldsymbol{q}$$

Eigenmodes $H = \sum_{l,q} \omega(q) \alpha^{\dagger}(q) \alpha_{l}(q)$

Houghton, Kwon & Marston Adv. in Phys. (2000) +Haldane, Castro Neto & Fradkin, Kim & Wen & Lee, ...

Interaction quench in a 2D Fermi Gas

N Nessi, A Iucci, and MAC, arXiv:1401.1986

$$\langle K(t) \rangle \rightarrow \langle \Psi_0 | (H - E_{\rm gs}) | \Psi_0 \rangle + O(g^3)$$

 $n(p)_{\uparrow} t = 0$

Prethermalized State = GGE

How do we describe the pre-thermalized state?

Eigenmodes
$$H = \sum_{l,q} \omega(q) \alpha^{\dagger}(q) \alpha_{l}(q)$$

Generalized Gibbs Ensemble

 $\rho_{\rm GGE} = \frac{1}{Z_{\rm GGE}} \exp\left[\sum_{l,\boldsymbol{q}} \lambda_l(\boldsymbol{q}) I_l(\boldsymbol{q})\right]$

 $I_l(\boldsymbol{q}) = \alpha_l^{\dagger}(\boldsymbol{q}) \alpha_l(\boldsymbol{q}) \underbrace{Fermi \ Surface}_{eigenmodes}$

Conclusions (part II)

- Generally speaking, systems that can be described in terms of quadratic Hamiltonians of Bosonic or Fermionic elementary excitations thermalize to a Generalized Gibbs Ensemble (GGE).
- Close to the fixed point, interacting Fermions in 1D exhibit very slow relaxation dynamics following a quantum quench. At T = 0, the discontinuity at the Fermi energy vanishes as a power law.
- Even systems that eventually do thermalize can exhibit an intermediate regime known as pre-thermalization. The system dynamics may be describable for short times by a quadratic Hamiltonian, and therefore the pre-thermal state will be described by the GGE.