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OutlookOutlook

Atomtronics: a new stage for quantum simulation ?
– optical circuits with lithographic accuracy 
– neutrality of atoms
– bosons / fermions
– flexibility on interactions

Quantum information ?

What could be a qubit ?

Particle current flowing in a ring-shaped potential
a barrier creates an interference state (SQUID)

the cold-atom analog of a flux qubitflux qubit

D. Solenov, D. Mozyrsky (2011)
L. Amico, D. Aghamalyan, F. Auksztol, H. Crepaz, R. Dumke, L.C. Kwek (2014)



  

Our model

● Interacting bosons on a 1D lattice
● Localized potential on one lattice site
● Magnetic flux piercing the ring

✔ No vortex formation
✔ Easier to localize a barrier
✔ Ring-ring interactions

L. Amico et al. (2014)

→ Rainer's talk
→ Davit's talk

Previous studies in limiting cases:
Hallwood, Ernst, Brand (2010)
Nunnenkamp, Rey, Burnett (2011)



  

Our model

● Interacting bosons on a 1D lattice
● Localized potential on one lattice site
● Magnetic flux piercing the ring

on-site interactions
local

potential

tight-binding

artificial magnetic flux

An effectiveeffective Bose-Hubbard model
→ hopping renormalized by the magnetic flux

Niemeyer, Freericks, Monien (1999)



  

Effective two-level system

WITHOUT barrier:
rotational invariance
→ set of parabolas with 
     defined angular momentum

WITH barrier:
symmetry breaking
→ avoided crossing

gap separating 
first two bands

@ large fillings:     quantum phase model  → Davit's talk
@ normal fillings, n ≈ 1:   Bose-Hubbard   → this talk→ this talk



  

Effective two-level system

An effective “qubitqubit” (two-level system) may be identified

energy splitting of the two levels should be sufficiently large

higher excitations should be energetically far enough
from the two competing ground states



  

Bose-Hubbard model:
the low-lying spectrum

Check the dependence of   ∆E
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Mostly  numerical  study:  exact diagonalization (ED)
 density-matrix renortmalization group (DMRG)
 Tonks-Girardeau (TG) mapping
 Gross-Pitaevskii (GP) approximation
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Dependence on interactions & barrier strength

ED
N = 4    bosons
M = 16  sites

✔   U / t = 10, Λ / t = 0.5
 

→ large interactions
→ moderate barrier

✗   U / t = 2, Λ / t = 5
 

→ weaker interactions
→ larger barrier

Too weak interactions cannotcannot suffice to isolate the qubit !

Λ/t = 0.1

Λ/t = 10
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Dependence on the system size

DMRG,   filling: N / M = 1/4

small barrier intermediate barrier large barrier

best regime: small barrier
mesoscopic size Similar to the scaling of persistent currents:

Cominotti, DR, Rizzi, Hekking, Minguzzi (2014)
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Dependence on the filling

ED,   M = 9 (mesoscopic ring)

Superfluid regime:
smooth dependence on N

small barrier → screening limit
large barrier  → tunnel limit

Mott regime:
reminiscent of gapped phases

(finite-size effects @ large Λ)



  

Dependence on the filling

Non-monotonic dependence on U

small interactions → level mixing of single-particle energies increases with N
large interactions → TG limit: single-particle gaps are identical for all level crossings

ED & TG,   M = 11 (mesoscopic ring)



  

What are the most advantageous “working points” ?

✔ Moderate-to-strong interactions
✔ Small-barrier limit



  

The ratio  Λ / U  as a useful benchmark parameter to define the qubit quality

What are the most advantageous “working points” ?

✔ Moderate-to-strong interactions
✔ Small-barrier limit

density profiles along the ring…

 → Matteo's talk

@ different interaction regimes U / t
@ different barriers
     ( Λ / t = 0.01, 0.05, 0.1, 0.5, 1, 5 )

ED
N = 5    bosons
M = 11  sites



  

The ratio  Λ / U  as a useful benchmark parameter to define the qubit quality

What are the most advantageous “working points” ?

✔ Moderate-to-strong interactions
✔ Small-barrier limit

favorable

unfavorable

… & barrier strength required
 to disconnect the ring

(up to a given threshold)



  

Momentum distribution

Focus on the ground state: detectability of macroscopic superposition
of circulating states

time-of-flight expansion

on a lattice…



  

Momentum distribution

In absence of barrier (Λ = 0)

– rotational invariant system
– currents unaffected by interactions
– smeared signal at large U

0 < Ω < π    no circulation
π < Ω < 2π  one quantum of circulation
Ω = π   interference of them

Focus on the ground state: detectability of macroscopic superposition
of circulating states

time-of-flight expansion



  

Without interactions (a single-particle problem)

Absence of barrier (Λ = 0)

n = 0   peaked at k = 0
n > 0   ring shaped, radius growing with n

Presence of barrier (Λ ≠ 0)

mix states with different angular momentum

interference term

slight offset from
frustration point (Ω = π)

nontrivial dependence
on Λ and U

Λ / t = 0 Λ / t = 10-2 Λ / t = 10-1 Λ / t = 1

profiles at Ω = π + εN / M = 5 / 11



  

With interactions (a many-body problem)

profiles at Ω = π + εN / M = 5 / 11



  

With interactions (a many-body problem)

TOF images are independent of the barrier above a given critical value Λ
c

contrast figure of merit:

increasing Λ

→ Matteo talk

η constant @ U
c
 defined as the interaction strength required to disconnect the ring

non-monotonic screening
of the barrier vs. U



  

With interactions (a many-body problem)

@ large fillings

(GPE analysis)

A larger barrier strength is required to observe superposition features

Large N enhances the screening of the barrier!

M = 11,  U = 10-2



  

SummarySummary

Interacting bosons on a ring-shaped 1D lattice with a localized barrier:

an effective qubit [@ low-energies]

✔ Scaling of the energy gap for the qubit
→ appreciableappreciable for small / mesoscopic systems
→ suppressedsuppressed in the thermodynamic limit

✔ Superposition of circulation states: momentum distribution

interference between forward/backward scattered bosons

The ratio  U / Λ  locates the optimal working point for gap resolution & TOF detectability

New J. Phys. 17 (2015) 045023
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