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Molecules as electronic devices

in 1974, Aviram and Ratner (Chem. Phys. Lett. 29, 277 (1974))
suggested the use of individual molecules as rectifiers (i.e. a device
which allows current to pass only for bias voltages larger than a
threshold value)

Idea: part of molecule acts as donor, other part as acceptor

Benasque 2014: S. Kurth Quantum transport: steady state



Outline
Molecular Electronics

Steady-state approach to electron transport
Steady-state transport with DFT for model systems

Summary

Why Molecular Electronics?

ultimate limit of miniaturization in electronics (higher packing
density, ...)

times for electron transit through molecules smaller than
typical operation times of semiconductor-based transistors

chemically tailor molecular devices according to desired
functionality
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Experimental techniques for single-molecule transport

mechanically controlled break junction technique (MCBJ)

open a nanoscale gap between two gold electrodes by mechanical
bending, put molecule in solution on junction, hope that a
molecule bridges the gap
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Experimental techniques for single-molecule transport

Reed et al (Science 278, 252 (1997)):
first current measurements through single molecules using MCBJ

bias (V)

Benasque 2014: S. Kurth Quantum transport: steady state



Outline
Molecular Electronics

Steady-state approach to electron transport
Steady-state transport with DFT for model systems

Summary

Experimental techniques for single-molecule transport

Scanning tunneling microscopy (STM)

from webpage of J.C. Cuevas

from F. Pump et al,
Appl. Phys. 93, 335 (2008)
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Landauer steady-state approach to electron transport
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Standard approach: Landauer formalism plus static DFT

Starting point: Hamiltonian of static DFT in localized basis, define
retarded Green function(E + iη)1−

 HLL HLC 0
HCL HCC HCR

0 HRC HRR

 GLL GLC GLR
GCL GCC GCR
GRL GRC GRR

 = 1

note: no direct hopping between left and right leads
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Standard approach: Landauer formalism plus static DFT

project on central region

GCC(E) = ((E + iη)1CC −HCC − ΣL(E)− ΣR(E))−1

embedding self-energy for lead α

Σα(E) = HCα ((E + iη)1α −Hαα)−1HαC

Landauer formula for steady-state current

I(V ) =
2e

h

∫
dE T (E, V ) (fβ(E − eVL)− fβ(E − eVR))

with bias V = VL − VR and transmission function

T (E, V ) = Tr {ΓLGCCΓRGCC} Γα = i(Σα − Σ†α)
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Standard approach: Landauer formalism plus static DFT

Schematic idea of Landauer approach

Zero-bias conductance in Landauer formalism

G

G0
=

dI

dV

∣∣∣∣
V=0

= −
∫

dE T (E)
∂fβ(E)

∂E
G0 =

2e2

h

in zero-temperature limit: G
G0

= T (EF )
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Example for application of Landauer formalism

Chrysazine molecule attached to gold leads
Ref.:
A. Zacarias, E.K.U. Gross, Theor. Chem. Acc. 125, 535 (2010)
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Landauer + static DFT

Landauer + static DFT (DFT-NEGF) widely used for ab-initio
transport

inclusion of phonons possible: inelastic transport
spectroscopies

extension to thermal transport: thermal electron currents by
Landauer-like formula
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Critique of the Landauer approach
Empirical finding: currents through single (esp. organic) molecules
often differ from experimental ones by 2-3 orders of magnitude
Basic assumptions behind Landauer:

A stationary current always develops

The stationary state is uniquely determined by the bias

Theoretical weaknesses:

Landauer formalism valid for non-interacting electrons

Static DFT is a ground state theory and therefore in principle
not suited to describe systems in a non-equilibrium situation
−→ even if exact effective KS potential of static DFT could
be used, predictions of Landauer might still be incorrect!

−→ use time-dependent DFT which is exact in principle.
Furthermore, it allows to study time-dependent transport
phenomena (transients, AC bias, interaction with laser, etc...)
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

TDDFT for transport: general idea

start from contacted system L-C-R in the ground state (or in
thermal equilibrium)

at some time t0 switch on the bias and follow time evolution

for DC bias: expect evolution towards a steady state
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Steady-state transport in TDDFT
assume KS system evolves towards steady state −→ steady-state
current in TDDFT (G. Stefanucci et al, in Molecular and Nano
Electronics: Analysis, Design, and Simulation, ed. by J. Seminario,
(Elsevier, 2007))

Landauer-like formula for steady-state current

I(V )

= −
∫

dE

2π
T (E, V ) (fβ(E + VL+δVxc,L)− fβ(E + VR+δVxc,R))

with δVxc,α = limt→∞ limr→sα∞(Vxc(r, t)− Vxc(r, 0)) where
sL = −1 and sR = +1

note: in general, standard Landauer formula has to be augmented
by xc contribution δVxc,α to the bias
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Steady-state transport in TDDFT (cont.)

zero-bias conductance

G

G0
= −(1 +Qxc)

∫
dE T (E)

∂fβ(E)

∂E

with dynamical xc corrections Qxc

see also:
M. Koentopp, K. Burke, F. Evers, PRB 73, 121403(R) (2006)
N. Sai, M. Zwolack, G. Vignale, M. Di Ventra, PRL 94, 186810
(2005)
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Derivative discontinuity in static DFT
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Derivative discontinuity in static DFT

total energy as function of (fractional) particle number is a series
of straight lines (Perdew et al, PRL 49, 1691 (1982))

derivative discontinuity

∆ = I(N)−A(N)

I(N): ionization potential
A(N): electron affinity
N : integer number of

electrons
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Derivative discontinuity in static DFT (cont.)

for given external potential v(r), extend HK ground state energy
functional to non-integer particle numbers:

derivative discontinuity

∆ = lim
ω→0

(
δEv[n]

δn(r)

∣∣∣∣
N+ω

−δEv[n]

δn(r)

∣∣∣∣
N−ω

)
= ∆KS + ∆xc

KS discontinuity ∆KS = εLUMO − εHOMO

xc contribution to discontinuity:

∆xc = lim
ω→0

(
δExc[n]

δn(r)

∣∣∣∣
N+ω

−δExc[n]

δn(r)

∣∣∣∣
N−ω

)
note: for traditional functionals (LDA, GGA): ∆xc = 0 !!
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
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Simple impurity model for transport

one interacting impurity (level), on-site interaction U (charging
energy of level), non-interacting leads, hopping V in leads and
hopping VLink from leads to impurity, on-site energy ε0 at impurity,
assume local KS potential only non-vanishing at impurity

interested in case of weak links |VLink| < |V | and in wide-band
limit: |VLink| → ∞, |V | → ∞ such that Γα = (Vlink)2/|V | = const
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Self-consistency condition for steady state density

Landauer approach:
assume for biased system there exists steady state with density n
at impurity −→ self-consistency condition for n

n = 2
∑
α=L,R

∫ ∞
−∞

dω

2π
fβ(ω − Vα)Γα(ω −Gα)|G(ω)|2

G(ω) = [ω − vKS(n)− ΣL(ω − VL)− ΣR(ω − VR)]−1

vKS(n) = ε0 + vHxc(n)

Vα: bias in lead α
fβ(ω): Fermi function at inverse temperature β
Σα: embedding self energy for lead α (= − i

2Γα in wide-band limit)
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Landauer formula for steady state current

I =

∫ ∞
−∞

dω

2π
T (ω) [fβ(ω − VL)− fβ(ω − VR)]

with transmission function

T (ω) = Tr {ΓL(ω − VL)G(ω)ΓR(ω − VR)G∗(ω)}

−→ zero-bias conductance:

G/G0 = −
∫ ∞
−∞

dω

2π
T (ω)

∂fβ(ω)

∂ω
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Single-site model to construct finite temperature functional

4 states in Fock space: |0〉, | ↑〉, | ↓〉, | ↑↓〉

calculate density n(v0 − µ) = n(ṽ0)
invert analytically −→ ṽ0(n)

non-interacting KS system: density ns(ṽs)
invert analytically −→ ṽs(ns)

Hartree-xc potential: vHxc(n) = ṽs(n)− ṽ0(n)
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Spectral function and smoothening

Spectral function of single-site model

ASSM (ω) = lim
η→0

[n
2
L2η(ω − v0 − U) +

(
1− n

2

)
L2η(ω − v0)

]
with Lorentzian Lδ(ω) = δ

ω2+( δ
2)

2

smoothen peaks by replacing η → γ/2, the WBL emb. self energy

Spectral function of “smoothened” single-site model

ASSM−sm(ω) =
n

2
Lγ(ω − v0 − U) +

(
1− n

2

)
Lγ(ω − v0)

often derived from EOM for Coulomb blockade regime
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Hartree-xc potential from reverse engineering

density from spectral function

n(ṽ0) = 2

∫
dω

2π
fβ(ω)A(ω)

invert n(ṽ0) −→ ṽ0(n); same for non-interacting density
ns(ṽs) −→ ṽs(ns)

Hartree-xc potential

vHxc(n) = ṽs(n)− ṽ0(n)
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Hartree-xc potential for (smoothened) single-site model

Hartree-xc potential for different temperatures and U=10 (energies
in units of γ)

derivative “discontinuity”
(better: step feature)
emerges naturally in the
zero-temperature limit
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Kondo effect: what TDDFT has to say

This work (finite temperature, TDDFT):

Stefanucci, Kurth, PRL 107, 216401 (2011)

Related work (zero temperature, DFT/Landauer):

Bergfield, Liu, Burke, Stafford, PRL 108, 066801 (2012)

Tröster, Schmitteckert, Evers, PRB 85, 115409 (2012)
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Finite temperature conductance with Landauer

T << TK: Kondo
plateau in conductance
due to discontinuity;

T >> TK: plateau not
destroyed; no Coulomb
blockade peaks

exact data from: Izumida, Sakai, J. Phys. Soc. Jpn., 2005
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Finite temperature conductance with Landauer

two ways to understand T = 0 result:

Meir-Wingreen formula for conductance:

G
G0

= γ2|G(µ)|2 γ−Im Σ(µ)
γ

with many-body GF G(ω) at impurity and self energy Σ
at Fermi energy: Im Σ(µ) = 0 −→ can describe conductance
by a KS potential vs = v0 + ReΣ(µ)

Friedel sum rule (Langreth):

conductance determined by density n0 on dot: G = G(n0)
if KS potential gives good density −→ good conductance
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Finite temperature conductance with Landauer

Warning: KS density of states is always a simple Lorentzian, i.e., it
has nothing to do with the exact DOS of the model!

However: due to discontinuity, the peak of the Lorentzian is pinned
to Fermi energy (like the many-body resonance for the exact DOS)
leading to conductance G0
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Finite temperature conductance with Landauer

note: at particle-hole symmetric point v0 = −U/2 our
approximation gives exact KS potential for all temperatures

for finite T : Landauer
does not give correct
conductance although
static KS potential
is exact!

exact results from
T.A. Costi, PRL (2000)

difference between Landauer and exact results due to dynamical xc
corrections!
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XC bias by reverse engineering

Reference:

P. Schmitteckert, M. Dzierzawa, P. Schwab, Phys. Chem.
Chem. Phys. 15, 5477 (2013)
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IRL model: xc bias by reverse engineering

Interacting resonant level model: two 1-d leads connected to one
interacting site: Ĥ = ĤL + ĤR + ĤLR

ĤLR = −Vlink(ĉ†ĉL,1 + ĉ†ĉR,1 +H.c.)+U(n̂−1/2)(n̂L,1 + n̂R,1−1)

Numerically exact solution (for finite leads) with td-DMRG −→
reverse engineering to obtain exact TD KS potential
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IRL model: xc bias by reverse engineering (cont.)

external potential, exact KS potential, and KS potential in
adiabatic approximation in the IRLM close to impurity

Adiabatic approximation (obtained from condition that ground
state gives density n(T )) completely misses the bias
renormalization due to dynamical xc effects
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Summary

Landauer + static DFT: the de-facto standard approach to
ab-initio steady-state transport, BUT: in principle incomplete

Landauer + static DFT can be exact in zero-bias limit, but
only under special circumstances (e.g. when Friedel sum rule
applies, at T = 0)

TDDFT approach to transport in principle ok

in steady state TDDFT leads to a Landauer-like formula for
the current but includes xc corrections to the bias

adiabatic approximation fails to capture dynamical xc
corrections
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