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@ Molecular electronics

@ Steady-state approach to transport
o Landauer + static DFT for steady state transport
o TDDFT approach to (steady-state) transport

@ Steady-state transport with DFT for model systems

e Derivative discontinuity in static DFT

A simple impurity model and finite-temperature functionals
Kondo effect from (TD)DFT point of view

XC bias by reverse engineering

@ Summary
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Molecular Electronics

Molecules as electronic devices

in 1974, Aviram and Ratner (Chem. Phys. Lett. 29, 277 (1974))
suggested the use of individual molecules as rectifiers (i.e. a device
which allows current to pass only for bias voltages larger than a

threshold value)
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Fig. 2. An example of a rectifier molecule.

Idea: part of molecule acts as donor, other part as acceptor
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Molecular Electronics

Why Molecular Electronics?

@ ultimate limit of miniaturization in electronics (higher packing
density, ...)

@ times for electron transit through molecules smaller than
typical operation times of semiconductor-based transistors

@ chemically tailor molecular devices according to desired
functionality
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Molecular Electronics

Experimental techniques for single-molecule transport

@ mechanically controlled break junction technique (MCBJ)

open a nanoscale gap between two gold electrodes by mechanical
bending, put molecule in solution on junction, hope that a
molecule bridges the gap
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Molecular Electronics

Experimental techniques for single-molecule transport

Reed et al (Science 278, 252 (1997)):
first current measurements through single molecules using MCBJ
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Molecular Electronics

Experimental techniques for single-molecule transport

@ Scanning tunneling microscopy (STM)

from F. Pump et al,
Appl. Phys. 93, 335 (2008)

from webpage of J.C. Cuevas
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Landauer + static DFT for steady-state transport
TDDFT approach to (st transport

Steady-state approach to electron transport

Landauer steady-state approach to electron transport J
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Landauer + static DFT for steady-state transport

Steady-state approach to electron transport TDDFT approach to (steady-state) transport

Standard approach: Landauer formalism plus static DFT

central
left lead L . right lead R
region C

<l

Starting point: Hamiltonian of static DFT in localized basis, define
retarded Green function

Hrrp, Hipe O Grr, Gre Grr
(E+in)l— | Hcr Hec Her Ger Gee Ger | =1
0 Hgrc Hgr Grr Grc Ggr

note: no direct hopping between left and right leads
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Landauer + static DFT for steady-state transport

Steady-state approach to electron transport TDDFT approach to (steady-state) transport

Standard approach: Landauer formalism plus static DFT

project on central region
Geo(E) = ((E +in)lee — Hoe — £1(E) - Sr(E))™
embedding self-energy for lead «
Sa(E) = Hoa (B + in)la — Haa) ™ Hac

Landauer formula for steady-state current

726

1V)= 3 [AB T(BV) (Fa(E - V1) - falE - Vi)

with bias V' = V7, — Vi and transmission function

T(E,V) =Tr{T1GccTrGoc) Tp=i(Zq — 20)

v
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Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Steady-state approach to electron transport

Standard approach: Landauer formalism plus static DFT

Schematic idea of Landauer approach

kg +V/2

v leftgoing e in right lead

rightgoing e in left lead
KS

Transmission T(E,V)

Zero-bias conductance in Landauer formalism

G _dr
Gy dV

9f5(E) 2¢?
=— | dET(F)————= Gop= —
== [arrm 0=Z

in zero-temperature limit: G% =T(EFr)
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Steady-state approach to electron transport

Landauer + static DFT for steady-state transport
TDDFT approach to (steady-state) transport

Example for application of Landauer formalism

Chrysazine molecule attached to gold leads

Ref.:

A. Zacarias, E.K.U. Gross, Theor. Chem. Acc. 125, 535 (2010)
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Landauer + static DFT for steady-state transport
Steady-state approach to electron transport TDDFT approach to (steady-state) transport

Landauer + static DFT

o Landauer + static DFT (DFT-NEGF) widely used for ab-initio
transport

@ inclusion of phonons possible: inelastic transport
spectroscopies

@ extension to thermal transport: thermal electron currents by
Landauer-like formula
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Landauer + static DFT for steady-state transport

Steady-state approach to electron transport TDDFT approach to (steady-state) transport

Critique of the Landauer approach

Empirical finding: currents through single (esp. organic) molecules
often differ from experimental ones by 2-3 orders of magnitude
Basic assumptions behind Landauer:

@ A stationary current always develops
@ The stationary state is uniquely determined by the bias
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Landauer + static DFT for steady-state transport

Steady-state approach to electron transport TDDFT approach to (steady-state) transport

Critique of the Landauer approach

Empirical finding: currents through single (esp. organic) molecules
often differ from experimental ones by 2-3 orders of magnitude
Basic assumptions behind Landauer:

@ A stationary current always develops
@ The stationary state is uniquely determined by the bias
Theoretical weaknesses:

@ Landauer formalism valid for non-interacting electrons

e Static DFT is a ground state theory and therefore in principle
not suited to describe systems in a non-equilibrium situation
— even if exact effective KS potential of static DFT could
be used, predictions of Landauer might still be incorrect!
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Landauer + static DFT for steady-state transport

Steady-state approach to electron transport TDDFT approach to (steady-state) transport

Critique of the Landauer approach

Empirical finding: currents through single (esp. organic) molecules
often differ from experimental ones by 2-3 orders of magnitude
Basic assumptions behind Landauer:

@ A stationary current always develops
@ The stationary state is uniquely determined by the bias
Theoretical weaknesses:

@ Landauer formalism valid for non-interacting electrons

e Static DFT is a ground state theory and therefore in principle
not suited to describe systems in a non-equilibrium situation
— even if exact effective KS potential of static DFT could
be used, predictions of Landauer might still be incorrect!

— use time-dependent DFT which is exact in principle.
Furthermore, it allows to study time-dependent transport
phenomena (transients, AC bias, interaction with laser, etc...)
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Landauer + static DFT for steady-state transport

Steady-state approach to electron transport TDDFT approach to (steady-state) transport

TDDFT for transport: general idea

@ start from contacted system L-C-R in the ground state (or in
thermal equilibrium)

@ at some time ty switch on the bias and follow time evolution

o for DC bias: expect evolution towards a steady state

Benasque 2014: S. Kurth Quantum transport: steady state



Landauer + static DFT for steady-state transport

Steady-state approach to electron transport TDDFT approach to (steady-state) transport

Steady-state transport in TDDFT

assume KS system evolves towards steady state — steady-state
current in TDDFT (G. Stefanucci et al, in Molecular and Nano
Electronics: Analysis, Design, and Simulation, ed. by J. Seminario,
(Elsevier, 2007))

Landauer-like formula for steady-state current

(V)

dE

=~ [ T(B,V) B + VirtiVies) = F5(B + Vie Vo)

with 0Veq = limyyo0 limy s, 00 (Vae(r, t) — Vae(r, 0)) where
s, = —1 and sp=+1

note: in general, standard Landauer formula has to be augmented
by xc contribution 0V . to the bias
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Landauer + static DFT for steady-state transport

Steady-state approach to electron transport TDDFT approach to (steady-state) transport

Steady-state transport in TDDFT (cont.)

zero-bias conductance

G
o= -+Qu) / dE T(E)

with dynamical xc corrections Q).

dfp(E)
OF

see also:

M. Koentopp, K. Burke, F. Evers, PRB 73, 121403(R) (2006)
N. Sai, M. Zwolack, G. Vignale, M. Di Ventra, PRL 94, 186810
(2005)
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re functionals

Steady-state transport with DFT for model systems

Steady-state transport with DFT for model systems J
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals

. Kondo eff at TDDFT > say
Steady-state transport with DFT for model systems XC bias b

everse engineering

Derivative discontinuity in static DFT

total energy as function of (fractional) particle number is a series
of straight lines (Perdew et al, PRL 49, 1691 (1982))

E(N+®)

derivative discontinuity
A =1(N)— A(N)

I(N): ionization potential

A(N): electron affinity

N : integer number of
electrons
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
Kondo effect: what TDDFT has to say

Steady-state transport with DFT for model systems SE [5s y reverse e et

Derivative discontinuity in static DFT (cont.)

for given external potential v(r), extend HK ground state energy
functional to non-integer particle numbers:

derivative discontinuity

A = lim 5EU [n] —6EU [n] = AKS + Aa:c
w=0\ 0n(r) |y, On(r) [v_y
KS discontinuity Axs = eLumo — EHOMO
xc contribution to discontinuity:
A,. = lim 0E;.[n] _5Exc[n]
w—0 \ on(r) Netw on(r) |N_,

note: for traditional functionals (LDA, GGA): A,. =0 !
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Derivative discontinuity in static DFT
inite-temperature functionals
TDDFT has to say

Steady-state transport with DFT for model systems o
M rse engineering

Simple impurity model for transport

left lead 1+ | right lead
® o o o o ® ®

\._/\._/\._/”I\._/E(T\r_)l'\._/\._/\._/

Vv Voo Ve ViV Vv

one interacting impurity (level), on-site interaction U (charging
energy of level), non-interacting leads, hopping V' in leads and
hopping VLink from leads to impurity, on-site energy g at impurity,
assume local KS potential only non-vanishing at impurity
interested in case of weak links |Viink| < |V| and in wide-band
limit: [Viink| — oo, |[V| = oo such that Ty, = (Viink)?/|V| = const
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
Kondo effect: what TDDFT has to say

Steady-state transport with DFT for model systems SE [5s y reverse e et

Self-consistency condition for steady state density

Landauer approach:
assume for biased system there exists steady state with density n
at impurity — self-consistency condition for n

n=2 3 [ G hs =~ Vela(w =~ Ga)IGE)P

a=L,R
Gw)=w—vrgs(n) —Xp(w—-Vy) —Xr(w—Vg)|”

UKS(”) =¢&o+ Uch(n)

Vo : bias in lead «
fa(w): Fermi function at inverse temperature 3
Yo: embedding self energy for lead a (= —5I', in wide-band limit)
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
Kondo effect: what TDDFT has to say

Steady-state transport with DFT for model systems SE [5s y reverse e et

Landauer formula for steady state current

I— / Z D) [l ~ V) ~ folwo — Vi)

with transmission function
T(w) =Tr{Tp(w - VL)G(w)T'r(w — VR)G*(w)}

— zero-bias conductance:

G/Go = _/°° din(w)Gf,B(w)

o 2T ow
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Derivative discontinuity in static DFT

A simple impu inite-temperature functionals
Kondo effe ES ay

XC bias by e g

Steady-state transport with DFT for model systems

Single-site model to construct finite temperature functional

4 states in Fock space: |0), | 1), | {), | 1)
calculate density n(vyg — ) = n(?)
invert analytically — 9(n)

non-interacting KS system: density n4(0s)
invert analytically — v5(ns)

Hartree-xc potential: Vize(n) = Us(n) — vp(n)
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
Kondo effect: what TDDFT has to say

Steady-state transport with DFT for model systems SE [5s y reverse e et

Spectral function and smoothening

Spectral function of single-site model

SSM ¢, \ — 1:m | ¥ o W _
A (w)—}]li%[2L2n(w Vo U)+<1 2>L27,(w ’U())}

)

ith Lorentzian L =—20
with Lorentzian Ls(w) @)

smoothen peaks by replacing  — 7/2, the WBL emb. self energy

Spectral function of “smoothened” single-site model

ﬁLy(w —vo—U)+ (1 — g) Ly (w — )

ASSMfsm(
2

w) =

often derived from EOM for Coulomb blockade regime
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
. Kondo effect: s to say
Steady-state transport with DFT for model systems XC bias by

Hartree-xc potential from reverse engineering

density from spectral function

invert n(9y) — 0p(n); same for non-interacting density
ns(0s) — Us(ns)

Hartree-xc potential
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Derivative discontinuity in static DFT
A simple |mpur|ty model and finite-temperature functionals
£ :

Steady-state transport with DFT for model systems XC bias by

Hartree-xc potential for different temperatures and U=10 (energies

in units of 7)
s
o | derivative “discontinuity”
S 06 1 (better: step feature)
g .
£ 1 emerges naturally in the
o4 | zero-temperature limit
0.21- _
00 2
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Derivative discontinuity in static DFT
A simple impu model and finite-temperature functionals
Kondo effect: what TDDFT has to say

XC bias by reverse engineering

Steady-state transport with DFT for model systems

Kondo effect: what TDDFT has to say J

This work (finite temperature, TDDFT):
e Stefanucci, Kurth, PRL 107, 216401 (2011)

Related work (zero temperature, DFT /Landauer):
e Bergfield, Liu, Burke, Stafford, PRL 108, 066801 (2012)
@ Troster, Schmitteckert, Evers, PRB 85, 115409 (2012)
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
. K ffect: what TDDFT h.
Steady-state transport with DFT for model systems e GlifsE wiet E5 ¥ Y

XC bias by reverse engineering

Finite temperature conductance with Landauer

s 0.5 ‘
.’ \‘ |-
e ' 1 T << Tk: Kondo
8F ! ! -4 o04fF ] .
08 st :I 0 o . plateau in conductance
B R ,' '. due to discontinuity;
OB ssMsm| 7 03 f b
o | g -0 i
© 04 | : © oal ! N T >> Tk: plateau not
Sl . 1 - N A . |l 1
- . L ,,' i | destroyed; no Coulomb
[ iy 1
02l | R ' 1 blockade peaks
_ ! - .
i h i \ /’ %
I EE N N SRV W
™| L | L . S5 Sl 1 L 1 L 1 e
0-1 -0.5 0 05 1 0-1 -0.5 0 0.5 1
(vg+Ur2) (v+Ur2)

exact data from: lzumida, Sakai, J. Phys. Soc. Jpn., 2005
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
Kondo ef| t TDDFT has to say

Steady-state transport with DFT for model systems S [Es by revacs et

Finite temperature conductance with Landauer

two ways to understand 1" = 0 result:

@ Meir-Wingreen formula for conductance:

—Im¥
& =716 PR

with many-body GF G(w) at impurity and self energy 3
at Fermi energy: Im ¥ (u) = 0 — can describe conductance
by a KS potential vs = vy + ReX(p)

o Friedel sum rule (Langreth):

conductance determined by density ng on dot: G = G(ng)
if KS potential gives good density — good conductance
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
Kondo effect: what TDDFT has to say

Steady-state transport with DFT for model systems S [Es by revacs et

Finite temperature conductance with Landauer

Warning: KS density of states is always a simple Lorentzian, i.e., it
has nothing to do with the exact DOS of the model!

However: due to discontinuity, the peak of the Lorentzian is pinned
to Fermi energy (like the many-body resonance for the exact DOS)
leading to conductance Gg
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
Kondo effect: what TDDFT has to say

Steady-state transport with DFT for model systems S [Es by revacs et

Finite temperature conductance with Landauer

note: at particle-hole symmetric point vg = —U/2 our
approximation gives exact KS potential for all temperatures

i e for finite T": Landauer

does not give correct
— exact
conductance although

0.8~

XL static KS potential
= LN .
© RSN is exact!
04 © N
£ 0.6 ~
(OIS S~
04| S~
02r  gpl 11 exact results from
. Jrem L T.A. Costi, PRL (2000)
0.01 1
T,

difference between Landauer and exact results due to dynamical xc
corrections!
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Derivative discontinuity in static DFT

A simple impurity model and erature functionals
Kondo effect: at TDDFT has

XC bias by reverse engineering

Steady-state transport with DFT for model systems

XC bias by reverse engineering J

Reference:

@ P. Schmitteckert, M. Dzierzawa, P. Schwab, Phys. Chem.
Chem. Phys. 15, 5477 (2013)
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Derivative discontinuity in static DFT
A simple impurity model and finite-temperature functionals
Kondo effect: what TDDFT has

Steady-state transport with DFT for model systems SE [5iEs [y avEEe e

IRL model: xc bias by reverse engineering

Interacting resonant level model: two 1-d leads connected to one
interacting site: H = Hy, + Hr + Hrp

Hrp = —Vink(E'epa +elepy + Hoe) + U(A—1/2)(Az1+hRr1—1) |

Numerically exact solution (for finite leads) with td-DMRG —
reverse engineering to obtain exact TD KS potential
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Derivative discontinuity in static DFT
A simple impurity model and finit mperature functionals
Kondo effect: what TDDFT has

Steady-state transport with DFT for model systems S (e by aEs GiEIeiig

IRL model: xc bias by reverse engineering (cont.)

external potential, exact KS potential, and KS potential in
adiabatic approximation in the IRLM close to impurity

0.4
« " (i
0.3 F vgs(T = 12) —
0.2 vs(T = 20) ]
vEN(T = 12)
0-1F v (T = 20) —
= 0
-0.1 4
—0.2 |
-0.3 + -
~0.4 . . . . \
-60 -40 -20 0 20 40 60

lattice site 4

Adiabatic approximation (obtained from condition that ground
state gives density n(7")) completely misses the bias
renormalization due to dynamical xc effects
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Summary

Summary

@ Landauer + static DFT: the de-facto standard approach to
ab-initio steady-state transport, BUT: in principle incomplete

@ Landauer + static DFT can be exact in zero-bias limit, but
only under special circumstances (e.g. when Friedel sum rule
applies, at T' = 0)

o TDDFT approach to transport in principle ok

@ in steady state TDDFT leads to a Landauer-like formula for
the current but includes xc corrections to the bias

@ adiabatic approximation fails to capture dynamical xc
corrections
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