Approaches to (time-dependent) transport using TDDFT Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport

Time-dependent quantum transport using TDDFT

Stefan Kurth

Universidad del País Vasco UPV/EHU, San Sebastián, Spain
 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu

< A >

- - E - - E

Approaches to (time-dependent) transport using TDDFT Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport

Outline

- TDDFT-based approaches to transport
 - Finite systems
 - Embedding scheme
 - Master equation
- Time-dependent transport phenomena
 - Adiabatic LDA transport caluclations
 - Comparison with MBPT and tdDMRG
 - Dynamical picture of Coulomb blockade
 - Bistability
- Summary and critique of adiabatic TDDFT for transport

Approaches to (time-dependent) transport using TDDFT

Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport

Finite-system approach to time-dependent transport Quantum kinetic approach Time-dependent transport: embedding technique

Approaches to time-dependent transport using TDDFT

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline Approaches to (time-dependent) transport using TDDFT Time-dependent transport with TDDFT: some results

Summary and critique of adiabatic TDDFT for transport

Finite-system approach to time-dependent transport Quantum kinetic approach Time-dependent transport: embedding technique

TDDFT for transport: general idea

- start from contacted system L-C-R in the ground state (or in thermal equilibrium)
- at some time t_0 switch on the bias and follow time evolution
- for DC bias: expect evolution towards a steady state

3 1 4 3

Finite-system approach to time-dependent transport Quantum kinetic approach Time-dependent transport: embedding technique

Finite-system approach

Idea: simulate nanosystem attached to large but finite leads

for t=0: perform static DFT calculation with additional external potential $V(\boldsymbol{z})$ mimicking the bias

for t>0: switch off $V(\boldsymbol{z})$ and perform standard KS time-evolution

two large jellium leads connected by constriction (Sai et al, PRB **75**, 115410 (2007)): snapshots of current density in TDLDA

Benasque 2014: S. Kurth Time-dependent quantum transport using TDDFT

Finite-system approach to time-dependent transport Quantum kinetic approach Time-dependent transport: embedding technique

Finite-system approach (cont.)

other example: tight-binding gold chain between gold electrodes (N. Bushong et al, Nano Lett. **5**, 2569 (2005))

clear plateau in current after transients before eventually current dies out

TDLDA

current plateau still visible but somewhat less clear

Finite-system approach to time-dependent transport Quantum kinetic approach Time-dependent transport: embedding technique

Quantum kinetic approach

Look at transport from point of view of open (electronic) system coupled to a bath (typically phonon bath) Refs.: R. Gebauer et al, PRL **93**, 160404 (2004); Burke et al, PRL **94**, 146803 (2005)

Hamiltonian of total system

$$\hat{H}_{tot} = \hat{H}_{el} + \hat{H}_{bath} + \hat{H}_{coup}$$

reduced density operator

$$\hat{S}_{red}(t) = \text{Tr}_{bath} \left[\hat{S}_{tot}(t) \right] = \text{Tr}_{bath} \left[|\Psi(t)\rangle \langle \Psi(t)| \right]$$

A (1) > A (2) > A

Finite-system approach to time-dependent transport Quantum kinetic approach Time-dependent transport: embedding technique

Quantum kinetic approach

two assumption to derive equation of motion for \hat{S}_{red}

- weak coupling between electrons and bath \longrightarrow sufficient to go to 2nd order in \hat{H}_{coup}
- Markov approximation: time scale on which el. system varies is large compared to time-scale on which bath correlation functions decay

Master equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{S}_{red} = -i\left[\hat{H}_{el}, \hat{S}_{red}\right] + \breve{C}[\hat{S}_{red}]$$

with superoperator $\check{C}[\hat{S}_{red}]$ whose explicit form depends on bath density-functionalize this approach (Burke et al (2005)): for a given superoperator, map problem of interacting electrons on an effective non-interacting one

Outline Approaches to (time-dependent) transport using TDDFT

Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport Finite-system approach to time-dependent transport **Quantum kinetic approach** Time-dependent transport: embedding technique

Quantum kinetic approach

for practical convenience: use periodic boundary conditions, i.e., schematically as

so far only few applications to simple systems Example: 3-atom gold chain connected to two gold electrodes

Outline Approaches to (time-dependent) transport using TDDFT

Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport Finite-system approach to time-dependent transport Quantum kinetic approach Time-dependent transport: embedding technique

Time-dependent transport: embedding technique

TD Kohn-Sham equation for orbitals

$$\begin{bmatrix} i\partial_t - \begin{pmatrix} H_{LL}(t) & H_{LC} & 0 \\ H_{CL} & H_{CC}(t) & H_{CR} \\ 0 & H_{RC} & H_{RR}(t) \end{pmatrix} \end{bmatrix} \begin{pmatrix} \psi_{k,L}(t) \\ \psi_{k,C}(t) \\ \psi_{k,R}(t) \end{pmatrix} = 0$$

Finite-system approach to time-dependent transport Quantum kinetic approach Time-dependent transport: embedding technique

Time-dependent transport: embedding technique (cont.)

three equations

$$(i\partial_t - H_{LL}(t))\psi_{k,L}(t) = H_{LC}\psi_{k,C}(t)$$
(L)

$$i\partial_t \psi_{k,C}(t) = H_{CL}\psi_{k,L}(t) + H_{CC}(t)\psi_{k,C}(t) + H_{CR}\psi_{k,R}(t)$$
(C)
(i $\partial_t - H_{RR}(t)$) $\psi_{k,R}(t) = H_{RC}\psi_{k,C}(t)$ (R)

Retarded Green function for isolated lead $\alpha = L, R$

$$[i\partial_t - \hat{H}_{\alpha\alpha}(t)]g^R_{\alpha}(t,t') = \delta(t-t')$$

solve inhomogeneous Schrödinger equation (L) (simlarly for (R)) $\psi_L = g_L^R [r.h.s. of (L)] + [sol. of hom. SE (i\partial_t - H_{LL}(t)) \psi = 0]$ $\longrightarrow \psi_{k,L}(t) = \int_0^{t'} dt' g_L^R(t,t') H_{LC} \psi_{k,C}(t') + ig_L^R(t,0) \psi_{k,L}(0)$ Outline Approaches to (time-dependent) transport using TDDFT

Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport Finite-system approach to time-dependent transport Quantum kinetic approach Time-dependent transport: embedding technique

Time-dependent transport: embedding technique (cont.)

Equation of motion for orbital projected on central region

 $[i\partial_t - \hat{H}_{CC}(t)]\psi_{k,C}(t) =$

$$\int_0^L \mathrm{d}\bar{t} \, \Sigma_{emb}^R(t,\bar{t})\psi_{k,C}(\bar{t}) + \sum_{\alpha} H_{C\alpha}g_{\alpha}^R(t,0)\psi_{k,\alpha}(0)$$

with retarded embedding self energy

$$\Sigma^{R}_{emb}(t,t') = \sum_{\alpha = L,R} H_{C\alpha} g^{R}_{\alpha}(t,t') H_{\alpha C}$$

details in:

S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, E.K.U. Gross, PRB **72**, 035308 (2005)

Approaches to (time-dependent) transport using TDDFT Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport Summary and critique of adiabatic TDDFT for transport

Time-dependent transport with TDDFT: some results

(日) (同) (三) (三)

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Time-dependent transport with adiabatic LDA

Reference:

 C.-Y. Yam, X. Zheng, G.-H. Chen, Y. Wang, T. Frauenheim, T. Niehaus, PRB 83, 245448 (2011)

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Time-dependent transport with adiabatic LDA

study of TD transport with variant of embedding scheme in adiabatic LDA

< A >

Approaches to (time-dependent) transport using TDDFT Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Time-dependent transport with adiabatic LDA

TD currents for different switching of the TD bias: $V(t) = V_0(1 - \exp(-t/T))$ steady-state currents extracted from TD calculations compared to results of Landauer formalism \rightarrow currents agree

< 口 > < 同 > < 三 > < 三

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

・ロト ・同ト ・ヨト ・ヨト

(Static) DFT for the Hubbard model

N.A. Lima et al (PRL **90**, 146402 (2003); EPL **60**, 601 (2002)): parametrize total energy per site based on exact, Bethe ansatz (BA), solution of uniform Hubbard model with density n:

$$e^{BA}(n,U) = -\frac{2|V|\zeta}{\pi}\sin\left(\frac{\pi n}{\zeta}\right)$$

with parameter $\zeta(U)$ depending on interaction strength U one can extract xc energy $e^{BA}_{xc}(n,U)$ from this parametrization

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

(Static) DFT for the Hubbard model

derivative discontinuity at n=1

$$\Delta_{xc} = \lim_{\epsilon \to 0^+} \left[v_{xc}^{BALDA}(n=1+\epsilon) - v_{xc}^{BALDA}(n=1-\epsilon) \right]$$

$$= U - 4|V|\cos\left(\frac{\pi}{\zeta(U)}\right)$$

local approximation:

for non-uniform Hubbard models, i.e., non-constant on-site energies or even different interactions at each site: use $e_{xc}^{BA}(n_i, U_i)$ as xc energy at site *i* (Bethe ansatz LDA, BALDA) adiabatic approximation:

time-dependence of TDDFT xc potential at site *i* through $v_{xc}(i,t) = v_{xc}^{BALDA}(n_i(t))$ (C. Verdozzi, PRL **101**, 166401 (2008))

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Simple impurity model for transport

one interacting impurity, Hubbard-like on-site interaction U, non-interacting leads, hopping V in leads and hopping V_{Link} from leads to impurity, (time-dependent) on-site energy $\varepsilon_0(t)$ at impurity

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Comparison of TDDFT with many-body theory and DMRG

Reference:

• A.-M. Uimonen, E. Khosravi, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, E. K. U. Gross, PRB **84**, 115103 (2011)

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Image: Image:

Steady state densities and currents

Symmetric bias $W_L = -W_R = W/2$, U = 1, $V_{\text{Link}} = 0.5$, $\varepsilon_F = 0$

for low bias, ABALDA currents reasonable, too large for high bias!

Approaches to (time-dependent) transport using TDDFT Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Time-dependent currents

$$U = 0.5$$
, $V_{
m Link} = 0.3535$

For higher onsite energy ε_0 , ABALDA agrees better with many-body results

Image: Image:

∃ → < ∃</p>

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Dynamical Coulomb blockade and the derivative discontinuity

Reference:

S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, E.K.U. Gross, PRL 104, 236801 (2010); see also: C.A. Ullrich, Physics Viewpoint 3, 47 (2010)

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Self-consistency condition for steady state density

self-consistency condition for \boldsymbol{n}

$$n = 2 \sum_{\alpha=L,R} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} f_{\beta}(\omega - W_{\alpha}) \Gamma(\omega - W_{\alpha}) |G(\omega)|^{2}$$
$$G(\omega) = [\omega - v_{KS}(n) - \Sigma_{L}(\omega - W_{L}) - \Sigma_{R}(\omega - W_{R})]^{-1}$$
$$v_{KS}(n) = \varepsilon_{0} + \frac{1}{2} Un + v_{xc}^{BALDA}(n)$$

Question:

What happens for an xc potential which is discontinuous?

Image: A matrix

→ 3 → 4 3

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Steady state self-consistent density for impurity model

l.h.s. and r.h.s. of self-consistency condition for \boldsymbol{n}

no solution for steady state density for some values of the bias.

to understand physics of this regime \longrightarrow smoothen xc discontinuity

Image: A matrix

- - E - - E

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

くロト く得ト くほト くほう

Ground state densities in BALDA and QMC

compare BALDA and QMC ground state densities of impurity model as function of the on-site energies ε_0 for different values of the interaction U; $V_{\rm link} = 0.18$

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Steady-state density vs. bias

steady-state density as function of bias for different V_{Link}

BALDA:

step structure for small V_{link} width of step: U \rightarrow Coulomb blockade <u>Hartree:</u> no step structure

 \rightarrow crucial role of discontinuity

<u>note</u>: the role of the discontinuity in steady-state transport has also been discussed in C. Toher et al, PRL 95, 146402 (2005)

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Time-dependent density in presence of discontinuity

Fermi energy $\varepsilon_F = 1.5|V|$, on-site energy $\varepsilon_0 = 2|V|$, right bias $W_R = 0$, interaction U = 2|V|, $V_{\text{link}} = 0.3V$

for bias in step region of steady-state picture: no steady state; evolution towards a dynamic state of oscillating density around integer electron number

< ロ > < 同 > < 回 > < 回 >

Approaches to (time-dependent) transport using TDDFT Time-dependent transport with TDDFT: some results Summary and critique of adiabatic TDDFT for transport Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Time-dependent KS potentials and currents

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

イロト イポト イラト イラト

Bistabilities: switching between multiple steady states

References:

- E. Khosravi, A.-M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, E. K. U. Gross, PRB **85**, 075103 (2012)
- A.-M. Uimonen, E. Khosravi, G. Stefanucci, S. Kurth, R. van Leeuwen, E.K.U. Gross, J. Phys.: Conf. Ser. 220, 012018 (2010)

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

イロト イポト イラト イラト

Self-consistency condition for steady state density

self-consistency condition for \boldsymbol{n}

$$n = 2 \sum_{\alpha=L,R} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} f_{\beta}(\omega - W_{\alpha}) \Gamma(\omega - W_{\alpha}) |G(\omega)|^{2}$$
$$G(\omega) = [\omega - v_{KS}(n) - \Sigma_{L}(\omega - W_{L}) - \Sigma_{R}(\omega - W_{R})]^{-1}$$
$$v_{KS}(n) = \varepsilon_{0} + \frac{1}{2} Un + v_{xc}^{BALDA}(n)$$

<u>note:</u> this is a nonlinear equation which can have more than one solution, i.e., more than one steady state is possible! <u>Question:</u> Can one switch between different steady states by applying an appropriate time-dependent external driving field?

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity **Bistabilities**

Multiple steady state solutions: KS spectral functions

Parameters:

 $U=2,~W_L=1.8~W_R=-1.0,~V_{\rm Link}=0.3,~\varepsilon_0=-0.6,~\varepsilon_F=0$

BALDA: 3 solutions HF: 5 solutions MBPT (GW,2B): no closed equation for steady-state density; no indications of multiple steady states beyond HF note: MBPT gives much broader spectral functions (in steady state) than HF or BAI DA

< ロ > < 同 > < 回 > < 回 >

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Time-dependent switching between different steady states

switching between steady states by time-dependent on-site energy

Time-dependent transport with adiabatic LDA (Static) DFT for the Hubbard model Comparison with many-body theory and tdDMRG Dynamical Coulomb blockade and the derivative discontinuity Bistabilities

Surprises with TD simulations

Two interacting Hubbard sites connected to leads in HF bias and gate switched on at t = 0, use gate to drive system into different steady states; for certain gate parameters system can be driven into dynamical state with non-decaying oscillations

Summary and critique of adiabatic TDDFT for transport

- Various approaches to TDDFT for transport
 - Finite system approach
 - Master equation (open system)
 - Embedding scheme
- Some results of time-dependent transport with TDDFT
 - Adiabatic LDA TD transport calculations reach same steady state as given by Landauer+static DFT approach.
 - Adiabatic LDA can give reasonable TD and steady-state currents, especially in the low bias regime. MBPT at the level of second Born typically more accurate
 - Bistabilities and time-dependent switching between different steady states. But: No bistability found for correlated MBPT approaches. Is bistability an artefact of the adiabatic approximation?
 - Dynamical picture of Coulomb blockade. Again: Is this an artefact of the approximation?

Acknowledgements

- Gianluca Stefanucci, Univ. Rome Tor Vergata
- Hardy Gross and Elham Khosravi, MPI Halle
- Robert van Leeuwen and Anna-Maija Uimonen, Univ. Jyväskylä
- Claudio Verdozzi, Univ. Lund

4 B 6 4 B