# Nonperturbative quantum dynamics

I. Laser interactions with atoms/molecules II. Model systems and TDDFT

Manfred Lein, TDDFT school Benasque 2014





# Laser interactions with atoms/molecules

- Classical models and quantum description
- Multiphoton processes, tunneling ionization
- Recollision, high-harmonic generation, double ionization
- Strong-field approximation
- Molecules, laser-induced alignment
- Examples of open problems in strong-field dynamics

### Laser-matter interaction

### "Weak" light field (normal light, synchrotron)



Single-photon absorption

 $P \sim |\langle 1 | \mathbf{r} \cdot \mathbf{E} | 0 \rangle|^2$ 

### Strong light field

(laser pulses)



Multiphoton absorption

perturbative or nonperturbative

### Ultrashort laser pulses

#### Few-femtosecond light pulses are available:



- $\rightarrow$  cause ionization of atoms, fragmentation of molecules
- $\rightarrow$  allow ultrafast time-resolved measurements (pump-probe)
- $\rightarrow$  "carrier-envelope phase" becomes important

# **Classical preliminaries**

### Free classical electron in a monochromatic laser field

Equation of motion:  $|\ddot{\mathbf{r}}(t) = -\mathbf{E}_0 \sin(\omega t)|$ (using dipole approximation;  $\mathbf{E}_0 \sin(\omega t) = \text{electric field}$ , linearly polarized) Velocity:  $\dot{\mathbf{r}}(t) = \mathbf{v}_{\text{drift}} + \frac{\mathbf{E}_0}{\omega} \cos(\omega t)$ Position:  $\mathbf{r}(t) = \mathbf{r}_0 + \mathbf{v}_{\text{drift}}t + \frac{\mathbf{E}_0}{\omega^2}\sin(\omega t)$ drift + oscillation

t

**Oscillation amplitude**:  $\alpha = \mathbf{E}_0 / \omega^2$ 

# **Classical preliminaries**

Kinetic energy: 
$$T(t) = \frac{v_{\text{drift}}^2}{2} + \mathbf{v}_{\text{drift}} \cdot \frac{\mathbf{E}_0}{\omega} \cos(\omega t) + \frac{E_0^2}{2\omega^2} \cos^2(\omega t)$$

Average kinetic energy: 
$$\bar{T} = \frac{v_{\text{drift}}^2}{2} + \frac{E_0^2}{4\omega^2}$$

 $\rightarrow$  Define **ponderomotive potential**:

$$U_{\rm p} = \frac{E_0^2}{4\omega^2}$$

If field amplitude is position dependent, there will be a ponderomotive force  $\mathbf{F}_{p} = -\nabla U_{p}(\mathbf{r})$ .

(But in an ultrashort laser pulse, the electron has not enough time to follow this force).

Time evolution is described by the time-dependent Schrödinger equation (TDSE):  $i\frac{\partial}{\partial t}\Psi(t) = H(t)\Psi(t).$ 

Hamiltonian in dipole approximation ( $\lambda >>$  system size):

$$H(t) = H_0 + \mathbf{E}(t) \cdot \sum_j \mathbf{r}_j$$
 with  $\mathbf{E}(t)$  = electric field.

This is called *length gauge*.

Alternatively:

$$H'(t) = H_0 + \mathbf{A}(t) \cdot \sum_j [\mathbf{p}_j + \mathbf{A}(t)/2]$$
 with  
$$\mathbf{A}(t) = -\int_{-\infty}^t \mathbf{E}(t') dt'.$$

This is called *velocity gauge*.

The velocity-gauge wave function  $\Psi'(t)$  is related to the length-gauge wave function  $\Psi(t)$  by

$$\Psi'(t) = e^{-i\mathbf{A}(t)\cdot\sum_j \mathbf{r}_j} \Psi(t)$$

Are there problems with TDDFT and velocity gauge (momentum-dependent interaction)?

No, because gauge transformation does not change density .

 $\rightarrow$  TDKS equations may be solved in either gauge.

But: orbitals change under gauge transformation.

Free electron in the presence of a time-dependent electric field is described by the Hamiltonian (length gauge):

$$H(t) = -\frac{\nabla^2}{2} + \mathbf{E}(t) \cdot \mathbf{r}$$

Possible solutions of the TDSE are **Volkov states**:

$$\Psi_{\mathbf{p}}^{\mathrm{V}}(\mathbf{r},t) = e^{-iS(\mathbf{p},t,t')}e^{i[\mathbf{p}+\mathbf{A}(t)]\cdot\mathbf{r}}$$

with the action integral  $S(\mathbf{p}, t, t') = \frac{1}{2} \int_{t'}^{t} [\mathbf{p} + \mathbf{A}(t'')]^2 dt''$  and arbitrary, fixed t'.

These are plane waves with momenta depending on time as in classical mechanics.

Static electric field  $E \rightarrow$  potential barrier, allows tunneling.



Tunneling rate for the hydrogen atom (see Landau & Lifshitz):

$$w = \frac{4}{E}e^{-2/(3E)}$$

(derived from quasiclassical theory)

**Over-barrier** ionization

For sufficiently large field E > critical field  $E_{BS} \rightarrow$  ground-state energy above barrier maximum



 $\rightarrow$  Classical escape of the electron.

### $E_{\rm BS} =$ barrier suppression field strength

H atom:  $E_{\rm BS} = 0.113$  a.u.

(corresponds to laser intensity  $I_{\rm BS} = 4.5 \times 10^{14}$  W/cm<sup>2</sup>)

# **Ionization regimes**



 $\gamma = \frac{\text{tunneling time}}{\text{laser period}}$  (Keldysh parameter)

H atom:  $\gamma = \omega/E$ 

in general:  $\gamma=\sqrt{I_{\rm p}/(2U_{\rm p})}$  ,  $I_{\rm p}=$  ionization potential,  $U_{\rm p}=$  ponderomotive potential

Absorption of more photons than needed to overcome the ionization threshold

 $\rightarrow$  Peaks separated by the photon energy in the electron spectrum

Example:

experiment with Xe atoms, Agostini et al. PRA **36**, R4111 (1987).



FIG. 2. Electron energy spectra for different laser intensities and pulse durations. (a) reference spectrum,  $I = 2.2 \times 10^{12}$ W cm<sup>-2</sup>; (b) and (c)  $I = 7.5 \times 10^{12}$  W cm<sup>-2</sup>.

### **3-step process:**

- 1. ionization
- 2. acceleration by the field
- 3. return to the core

### **3-step process:**

- 1. ionization
- 2. acceleration by the field
- 3. return to the core

### **Possible consequences**:

- recombination (high harmonic generation coherent light)
- elastic scattering  $\rightarrow$  fast photoelectrons
- inelastic scattering  $\rightarrow$  e.g. double ionization

# High-harmonic generation



N photons of frequency  $\omega$ 

ightarrow 1 photon of frequency  $N\omega$ .

# High-harmonic generation



Maximum return energy:  $E_{\rm max}~=~3.17 U_{\rm p}$ 

$$\hookrightarrow$$
 Cut-off at  $\hbar\omega=3.17U_{\rm p}+I_{\rm p}$ 

[Corkum, PRL 71, 1994 (1993)]



# Calculation of spectra

Calculation of the time-dependent dipole acceleration

 $\mathbf{a}(t) = \langle \psi(t) | \nabla V_0 + \mathbf{E}(t) | \psi(t) \rangle$ 

and Fourier transform

$$\mathbf{a}(\Omega) = \int \mathbf{a}(t) e^{i\omega t}$$

gives emission spectrum

$$S(\Omega) \sim |\mathbf{a}(\Omega)|^2$$

In practice: time integration over pulse duration T,

$$\mathbf{a}(\Omega) = \int_0^T \mathbf{a}(t) f(t) e^{i\omega t}$$

with some window function f(t).

Alternatively:  $\mathbf{a}(t) = \ddot{\mathbf{D}}(t)$  from time-dependent dipole moment  $\mathbf{D}(t)$ or:  $\mathbf{a}(t) = \dot{\mathbf{v}}(t)$  from time-dependent dipole velocity  $\mathbf{v}(t)$ 

### Attosecond pulses

Currently shortest achieved coherent light pulses: 67as



Zhao et al., Opt. Lett. 37, 3891 (2012)

### **Rescattered photoelectrons**

**Scattered electrons** (*high-order above-threshold ionization*)



# **Double ionization**



Walker et al., PRL 73, 1227 (1994)

Double ionization is enhanced due to electron correlations by orders of magnitude.

# Identification of the recollision mechanism:

A. Becker, F.H.M. Faisal, J. Phys. B **29**, L197 (1996)

R. Moshammer et al., PRL 84, 447 (2000)

T. Weber et al., Nature **405**, 658 (2000)

M.L., E.K.U. Gross, V. Engel, PRL **85**, 4707 (2000)

Quantum mechanical methods for ultrashort pulses

- Numerical solution of the TDSE (or TDKS) equations
  - accurate,
  - but time consuming and hard to interpret,
  - approximations for TDDFT xc potential have deficiencies

### • Strong-field approximation

("Keldysh-Faisal-Reiss theory", "intense field S-matrix formalism")

- less reliable (e.g. strong dependence on gauge),
- but fast and amenable to physical interpretation.

Time evolution operator U(t, t') obeys Schrödinger equation:

$$i\frac{\partial}{\partial t}U(t,t') = [H_0 + H_{\rm int}(t)]U(t,t'),$$

where  $H_{int}$  is the system-field interaction.

The solution can be written in integral form:

$$U(t,t') = U_0(t,t') - i \int_{t'}^t U(t,t'') H_{int}(t'') U_0(t'',t') dt''.$$

Goal: calculation of transition amplitudes from ground state to continuum states with momentum p at final time  $t_f$ :

$$M_{\mathbf{p}}(t_{\mathrm{f}}, t_{\mathrm{i}}) = \langle \Psi_{\mathbf{p}}(t_{\mathrm{f}}) | U(t_{\mathrm{f}}, t_{\mathrm{i}}) | \Psi_{0}(t_{\mathrm{i}}) \rangle$$

Assumption 1: time evolution after ionization is governed by the laser field *only*, not by the binding potential, i.e.  $U(t, t'') \approx U_V(t, t'')$  (Volkov-Propagator). Then

$$U(t,t') = U_0(t,t') - i \int_{t'}^t U_V(t,t'') H_{int}(t'') U_0(t'',t') dt''.$$

Assumption 2: final state with momentum  ${\bf p}$  is approximated as a Volkov state.

 $\rightarrow$  Ionization amplitude in strong-field approximation (SFA):

$$M_{\mathbf{p}}^{\text{SFA}}(t_{i}, t_{f}) = -i \int_{t_{i}}^{t_{f}} \langle \Psi_{\mathbf{p}}^{\text{V}}(t) | H_{\text{int}}(t) | \Psi_{0}(t) \rangle dt$$

Set of nuclear and electronic coordinates  $\mathbf{R}_{j}$  and  $\mathbf{r}_{k}$ . Hamiltonian:

$$H_{0} = \sum_{j} \frac{P_{j}^{2}}{2M_{j}} + \sum_{k} \frac{p_{k}^{2}}{2} + \sum_{j,k} w_{j,e}(\mathbf{R}_{j}, \mathbf{r}_{k}) + \sum_{j_{1} \neq j_{2}} w_{j_{1},j_{2}}(\mathbf{R}_{j_{1}}, \mathbf{R}_{j_{2}}) + \sum_{k_{1} \neq k_{2}} w_{ee}(\mathbf{r}_{k_{1}}, \mathbf{r}_{k_{2}})$$

with  $w_{j_1,j_2}$  nucleus-nucleus interaction,  $w_{j,e}$  nucleus-electron interaction, and  $w_{ee}$  electron-electron interaction.

Light-molecule interaction:

$$H(t) = H_0 - \mathbf{D} \cdot \mathbf{E}(t)$$
  
with dipole moment  $\mathbf{D} = (\sum_j Z_j \mathbf{R}_j) - (\sum_k \mathbf{r}_k)$ 

Separation of time scales for nuclear and electronic motion due to great mass difference

 $\rightarrow$  Electrons adjust "instantaneously" to nuclear positions.

Born-Oppenheimer (BO) Ansatz for wave function:

$$\Psi(\mathbf{R}, \mathbf{r}, t) = \sum_{m} \chi_m(\mathbf{R}, t) \Phi_m(\mathbf{R}, \mathbf{r}),$$

 $\Phi_m(\mathbf{R}, \mathbf{r}) =$  electronic eigenstates at fixed nuclear positions.

Inserting into the field-free TDSE yields

$$i\frac{\partial}{\partial t}\chi_{m}(\mathbf{R},t) = \begin{bmatrix} T_{n} + V_{m}^{BO}(\mathbf{R}) \end{bmatrix}\chi_{m} \qquad \leftarrow \text{BO approximation} \\ + \sum_{m'} \langle \Phi_{m} | T_{n} | \Phi_{m'} \rangle \chi_{m'} \qquad \leftarrow \text{nonadiabatic couplings} \\ (T_{n} \text{ acting on both } \Phi_{m'} \text{ and } \chi_{m'})$$

Including the laser-molecule interaction, the BO TDSE becomes:

$$i\frac{\partial}{\partial t}\chi_m(\mathbf{R},t) = \left[T_n + V_m^{\rm BO}(\mathbf{R})\right]\chi_m(\mathbf{R},t) - \mathbf{E}\cdot\sum_{m'}\langle\Phi_m|\mathbf{D}|\Phi_{m'}\rangle\chi_{m'}$$

 $\rightarrow$  Functions  $\chi_m$  coupled only by the dipole matrix elements.

BO approximation breaks down for highly excited electrons:

- Rydberg molecules
- Electrons in the continuum

# Controlling harmonic generation with molecular alignment





impulsive alignment Itatani et al., PRL 94, 123902 (2005)

9th harmonic, adiabatic alignment Hay et al. PRL 87, 183901 (2001)

### Adiabatic alignment of molecules

Linear molecule with dipole moment  $\mu$  and polarizabilities  $\alpha_{||}$ ,  $\alpha_{\perp}$  interacts with laser field  $E = E_0 \cos(\omega t)$  as

$$V_{\mu}(\theta) = -\mu E \cos \theta, \quad V_{\alpha}(\theta) = -\frac{1}{2}E^2 \left(\alpha_{||} \cos^2 \theta + \alpha_{\perp} \sin^2 \theta\right)$$

Sufficiently high frequencies:  $\langle E \rangle \rightarrow 0$ ,  $\langle E^2 \rangle \rightarrow E_0^2/2$ 



Aligning laser field is switched on slowly  $\rightarrow$  *pendular states* 

Friedrich and Herschbach, PRL 74, 4623 (1995) *experiment:* Larsen et al., JCP 111, 7774 (1999)

# Impulsive alignment

Kick with a femtosecond pulse shorter than the rotational period  $\rightarrow$  Rotational revival structure exhibits times of *field-free alignment*. Seideman, PRL 83, 4971 (1999), Rosca-Pruna/Vrakking, PRL 87, 153902 (2001)

Detection by Coulomb explosion of  $N_2$  in circularly polarized pulse / ion detection:



Dooley et al., PRL 68, 023406 (2003)

# Two examples of open problems in laser atom/molecule interactions

- Tunneling times from the attoclock
- Photoelectron circular dichroism

### Tunneling times from the attoclock

Attoclock principle:

- ionization by near-circular polarized pulses
- measurement of angular offset of the distribution peak



Pfeiffer et al., Nat. Phys. 8, 76 (2011)

### Tunneling times from the attoclock

### Previous experiment: consistent with instantaneous tunneling



Pfeiffer et al., Nat. Phys. 8, 76 (2011)

### Tunneling times from the attoclock

### Recent experiment: appears to indicate non-zero real tunneling time



Landsman et al., arXiv:13012766v2 (2013)

# Strong-field photoelectron circular dichroism

- Ionization of chiral molecules with circularly polarized laser pulses
- Observable: three-dimensional photoelectron distribution
- Search for forward-backward asymmetry



[Ritchie, PRA 13, 1411 (1976); Cherepkov, CPL 87, 344 (1982); Powis, JCP 112, 301 (2000); Böwering et al., PRL 86, 1187 (2001)]

### Strong-field photoelectron circular dichroism

Femtosecond pulse PECD [Lux et al., Angew. Chem. Int. Ed. 51, 5001 (2012)]



### Camphor and fenchone HOMOs



**R**-camphor



### Calculated electron distributions (SFA+Born approximation)

R-fenchone, single orientation, LCP pulse (total length 20 cycles)



- Three-, four- and five-photon rings are visible.
- Asymmetry due to single orientation.

### Photoelectron distributions

R-fenchone, random orientation (numerically averaged over Euler angles)



- Asymmetry is reduced by angle averaging.
- Camphor distribution looks practically the same as in fenchone.

### Forward-backward asymmetries



- Nodal structure in good agreement with experiment
- Asymmetries smaller and of different sign compared to experiment
- Fenchone gives stronger asymmetry (matches experiment)

- Strong laser fields require nonperturbative description; even one-electron problem is demanding.
- In general, theoretical description relies heavily on models; open problems in simple systems
- TDDFT is the only tractable first-principles approach, already for atoms.

### Next part:

• Model systems and TDDFT