Astroparticle Physics: γ-Rays

Lecture 1: -Detection techniques -Production of γ-rays

> Marcos López Univ. Complutense Madrid

Outline

Introduction

- Detectors and Detection techniques
- Origin of γ–rays in Astrophysical sources
 - Basic production processes
 - Acceleration mechanisms

Very High Energy Astrophysics

- Relatively new discipline, in between Particle physics and Astrophysics.
- Studies the Universe at energies E > 1 MeV
- Opens a window to the nonthermal Universe
- This field started with the discovery of cosmic rays
- Today it can be divided into:
 - γ-ray astronomy
 - *V-astronomy* Taller de Altas Energias 2014, Benasque

Adventage of y-rays

Charged cosmic rays do not point to the source. Only y's (and v's) can be used to do astronomy

Observation techniques of y-ray Astronomy

From ground

From space

MAGIC

The bands of γ-ray astronomy

Low Energy	LE	0.1 – 100 MeV (10 ⁶ eV)
High Energy	HE	0.1 – 100 GeV (10 ⁹ eV)
Very High Energy	VHE	0.1 - 100 TeV (10 ¹² eV)
Ultra High Energy	UHE	0.1 – 100 PeV (10 ¹⁵ eV)
Extremely High Energy	EHE	0.1 – 100 EeV (10 ¹⁸ eV)

Remember:

- Optical photons: ~ 1 eV
- VHE γ-rays: ~ 10¹² eV !!

We will cover in these lectures the HE & VHE bands

Detection tecniques

Detection techniques Basic fact: γ-rays absorbed in atmosphere

Satellites

- Direct detection
- Small background
- Small Effective Area ~1m²

Ground Detectors

- Indirect detection
- Huge Effective Area ~ 10⁵m²
- Enormous hadronic background

Detecting an atmospheric shower

Recorded events

VHE Experimental World

2nd generation of Cherenkov telescopes

MAGIC (2004)

The MAGIC Collaboration Collaboration: ~ 150 Physicists, 21 Institutes, 8 Countries:

Goal: Achieve the lowest possible energy threshold Close gap between space & ground-based gamma-ray telescopes

How a CT works: Pixel signal extraction

How a CT works: Pixel signal extraction

Then we get a raw image of the shower.

How a CT works: Image Cleaning

NSB problem: The camera not only records the Cherenkov light but also the Light of the Nigh Sky Background (NSB)

We need to remove it

Very difficult @ Low energies (tens of GeV)

Taller de Altas Energias 2014, Benasque

Gamma/hadron separation

Main Problem of Chrenkov telescopes: Overwhelming background of Cosmic Rays (1000 CRs per γ-ray)

 A method to identify the nature of particle which originated the recorded event is mandatory

Idea:

Different kind of primary particles produce different kind of images in the camera

Different distributions of image parameters

Gamma/hadron separation

Gamma/hadron separation

<u>Methods:</u>

Simple Cuts: Cuts on image or/and shower parameters

Neural networks/ Random Forest:
Optimized decision trees

Others
Likelihood fit goodness of an analytic model

The γ -ray sky

The first views of the γ -ray Universe

The space era allowed to see the Universe with "new eyes"

VELA satellites (60's) They discovered the GRBs

COS-B (1975-1982)

First detailed map of the Milky Way. Identified 24 sources

Compton Gamma-Ray Observatory (1991-2000)

The first true γ -ray space telescope:

- Several instruments: EGRET, BATSE,...
- Discovered 271 sources: 7 pulsars, 66 AGN, 177 unidentified

Fermi space telescope (>2008)

More than 2000 sources

20

The VHE γ-ray sky (from ground)

Taller de Altas Energ

The future of y-ray astronomy

The CTA era

CTA represents the next generation of CTs

 A join effort of:
 HESS + MAGIC + VERITAS + new people

 Two observatories: North & South
 About 100 telescopes of 3 different sizes, for covering different energies ranges

CTA Layout

Low-energy section:

4 x 23 m tel. (LST) - Parabolic reflector - 100x100 m² area

Core-energy array:

25 x 12 m tel. (MST)
Davies-Cotton reflector
(+ Schwarz.-Couder)

- 1x1 km² area

(one) possible configuration

High-energy section: 70 x 4 m tel. (SST) - Schwarzschild-Couder - 3x3 km² area

Large-Sized Telescopes

23 m telescope for E < 200 GeV

27.8 m focal length 4.5° FOV 0.1° pixels Carbon-fibre structure

Taller de Altas Energias 2014, Benasque

400 m² dish area 1.5 m spherical mirror facets

On (GRB) target in < 20 sec.

26

Medium-Sized Telescopes

12 m telescope for E: 100 GeV – 10 TeV

16 *m* focal length **8° FOV** 0.18° pixels

100 m² dish area 1.2 m mirror facets

Schwarzchild-Couder MST (US): - CTA South expansion: +36 SC-MST – 10 *m* primary - 9° FOV

Small-Sized Telescopes

4 m SC telescope for E > few TeV

Monolithic aspherical secondary mirror

Baseline camera (SST & SC-MST): – Silicon PMs – 10° FOV

Primary mirror with hexagonal panels

The CTA era: recent news

First operative SST inaugurated this week in Sicily (Etna observatory)

Prove di CTA sull'Etna

Mercoledì 24 settembre presso la stazione osservativa di Serra la Nave dell'INAF-Osservatorio Astrofisico di Catania, inaugurazione di SST, il prototipo dei telescopi di piccola taglia che comporrà parte della estesa rete di rivelatori del Cherenkov Telescope Array (CTA). Giovanni Pareschi (INAF): «siamo il primo gruppo che farà un test con un telescopio prototipale completo che rispetta perfettamente i requisiti imposti dal programma CTA»

di Marco Galliani

venerdì 19 settembre 2014 @ 16:44

Deserto della Namibia o altipiani delle Ande? Forse meglio il complesso dell'Osservatorio astronomico del Leoncito in Argentina? La scelta del sito che ospiterà la porzione a sud dell'equatore del <u>Cherenkov Telescope Array</u> (CTA), una batteria di telescopi destinati a studiare le sorgenti di radiazione gamma provenienti dall'universo che, una volta realizzato, sarà il più potente e sensibile osservatorio per i raggi gamma mai costruito, non è stata ancora presa.

Di certo però ora c'è che il prototipo del gruppo di telescopi di piccola taglia che comporranno questa fantastica rete di strumenti per indagare i più violenti fenomeni che avvengono nello spazio è italiano e verrà inaugurato il 24 settembre prossi-

γ-ray production processes in Astrophysics

Non-termal origin of γ-rays

EM radiation from the Sun and stars is mainly thermal

A source emitting accordring to Blackbody spectrum cannot emit γ -rays unless T > 10⁸ K

Production of γ-rays

- 2. Inverse Compton effect
- 3. Disintegration of pions produced in the interaction of protons with the interstellar medium

Production of γ-rays

From high-energy e⁻ to γ-rays Synchrotron, IC y SSC

Emitted by charged particles accelerated along curved magnetic field lines

Discovered for the first time in Astrophysics in 1957, in the jet of the M87 galaxy

- The photon spectrum emitted by a single e⁻ accelerated along a field line B follows a power-law until a frencuency v_c, beyond which it falls exponentially
- For a population of e⁻ which energies distributed according to a power-law: $n_{e^-} \propto \gamma^{-p}$

the resulting photon spectrum is the sum of the spectrum emitted by

each e⁻:

$$\frac{dN_{\gamma}}{dE} \propto B^{\frac{p+1}{2}} \cdot E^{-\frac{p+1}{2}}$$

- Now it falls like a power-law Taller de Altas Energias 2014, Benasque

... the resulting spectrum is very different from the typical blackbody one

- In reality, the the spectrum doe not follow a power-law for all energies:
 - Low energy photons are 'absorbed' by the e⁻, process called Synchrotron self absorption

Synchrotron radiation emitted mainly in radio, but we will see that it is relevant for the production of γ -rays

Inverse Compton scattering (IC)

Ingredients

- Relativistic e-
- Background of 'soft' photons
 - E.g.: cosmic microwave background (CMB), optical photons from star or dust, Synchrotron photons

Inverse because photons gain energy from the e⁻

Inverse Compton scattering (IC)

Average energy gained by photons in Thomson limit $(\gamma h v_0 \ll m_e c^2)$

- Let's assume an e⁻ in an isotropic photon field, all photons having the same energy hv₀
- The average energy gained by the photons is:

Energy gained in one scattering

$$h\overline{v} = \underbrace{\left(\frac{dE}{dt}\right)_{IC}}_{\sigma_{T}} = \frac{4}{3}\gamma^{2}\left(\frac{V}{c}\right)^{2}h\upsilon_{0} \xrightarrow{\beta \sim 1} h\overline{v} \approx \frac{4}{3}\gamma^{2}h\upsilon_{0}$$

Electrons with $\gamma = 10^2 - 10^3$ exist in various astrophysical environments. They can convert low E photons in γ -rays via IC

E.g: 500 MeV e⁻ ($\gamma \sim 10^3$) with photons of $hv_0 \sim eV \rightarrow h\bar{v} \sim MeV$

Inverse Compton scattering (IC)

IC Spectrum emitted by a single electron

(Thomson limit: $\gamma hv_0 \ll m_e c^2$)

- Follows a power-law, up to a critical energy Ec, beyond which it drops
- The maximum energy that photon can reach is:

Taller de Al

Emax ~4 γ^2 h ν_0

41

IC spectrum emitted by a population of e- with energies distributed according to a power-law (p=2)

$$N_e(\gamma) \propto \gamma^{-p}$$

tas Energias 2014, Benasque $\frac{dN}{dE} \propto E^{-(p+1)/2} = E^{-1.5}$ for $p = 2$
Like in the Synchrotron case

Comparison Synchrotron Vs IC

Example: Mono-energetic e⁻ of **1TeV** & 100 TeV on different photon fields:

- CMB: kT = 2.35·10⁻⁴ eV
- Light emitted by dust in the far IR (FIR): kT = 0.02 eV
- Optical stellar light: kT = 1.5 eV

100 TeV e⁻ on optical photons produce γ-rays of 100 TeV

Comparison Synchrotron Vs IC

Example: population of e⁻ distributed according to a power-law of index p=2 interacting with CMB

photons:

$$\frac{N_e(\gamma) \propto \gamma^{-p}}{\sqrt{dE}}$$

$$\frac{dN}{dE} \propto E^{-(p+1)/2} = E^{-1.5}$$

The spectrum is multiplied by E²
 (such the e⁻
 spectrum is flat)

From electrons to γ-rays

Measuring simultaneously the Synch. and IC components, (multiwavelength observations) we can measure the B-filed in the emitting region

$$\frac{\left(Energy\,flux\right)_{Sync}}{\left(Energy\,flux\right)_{IC}} = \frac{\left(dE / dt\right)_{Sync}}{\left(dE / dt\right)_{IC}} = \frac{U_{mag}}{U_{rad}} = \frac{B^2}{2\mu_0 U_{rad}}$$

Taller de

Synchrotron Self-Compton (SSC)

Synchrotron photons can interact with the same e⁻ population which emitted them and gain energy via IC

This is known as the SSC mechanism

This explains the origin of γ-rays is many astrophysical sources, as AGNs, PWN,...

Taller de Altas Energias 2014, Benasque

Log v [Hz

γ-rays from hadronic processes

 $\mathbf{p} \rightarrow \pi^0 \rightarrow \gamma \gamma$

Hadronic production of γ-rays

High-energy protons (and nuclei) can also produce γ-rays
 Main process: inelastic collisions with ambient gas, producing pions

Minimum proton energy to produces pions: Emin = 280 MeV Taller de Altas Energias 2014, Benasque 47

Hadronic production of γ-rays

γ-ray spectrum from a proton population with a power-law energy distribution

For a power-law distribution of protons the resulting γray spectrum is also a power-law with the same spectral index

$$n_p \propto E^{-p} \rightarrow \frac{dN_{\gamma}}{dE} \propto E^{-p}$$

Same spectral index

If proton spectrum has a cut-off exp(-Ep/ E⁰), the γ-ray spectrum has it also, but at lower energies:

$$n_p \propto E^{-p} \cdot \exp\left(-\frac{E}{E_0}\right) \rightarrow \frac{dN_{\gamma}}{dE} \propto E^{-p} \cdot \exp\left(-\left(\frac{16E}{E_0}\right)^{\frac{1}{2}}\right)$$

Summary

γ-ray spectra reflect the underlying spectra of the high energy particles which produce them:

Electrons: E^{-p}

- Synchrotron:
- Inverse Compton: $E_{\gamma}^{-(p+1)/2}$ (clasic regime: Thompson)

 $E_{v}^{-(p+1)/2}$

 $E_{\gamma}^{-(p+1)}$ (quatum regime: K-N)

- Protons or nuclei: E^{-P}
 - π^0 production & decay: E_{γ}^{-p}

Provide information on the conditions in the emission region (**B**, target matter density)

Dilema: Leptonic or hadronic origin of γ-rays

To distinguish between leptonic or hadrnic scenarios we need to measure the γ -ray spectrum of the astrophysical sources

The SSC model explain most of the observed sources

IC Hadronic showers p⁺ (>>TeV) π^0 dec (TeV) VHEmatter π

So far we have assumed that the energy distribution of particles (e⁻ or protons) follows a power-law of spectral index -2
 This was not an arbitrary election. We will see now why

Particle accelaration mechanisms

For producing high-energy γ -rays (> MeV) we need:

High-energy particles

Requires a mechanism to accelerate particles up to ultra-relativistic energies

A target (magnetic field, photons, matter)

Fermi acceleration mechamism

Fermi proposed a mechanism to explain how the cosmic particles could reach ultra high energies *E. Fermi: "On the Origin of the Cosmic Radiation" (1949)*

"... cosmic rays are originated and accelerated primarily in the interstellar space of the galaxy by collisions against moving magnetic fields."

Idea: Cosmic particles could gain energy if they are reflected by "magnetic mirrors" moving in random directions. The role of "magnetic mirrors" would be played by magnetized clouds of interstellar material

Second order Fermi acceleration

Clouds move in random directions

Detail of the collision with one cloud

Result after colliding with many clouds

Particle collides with the cloud:

 gains energy in "head-on" collisions
 loses energy in "overtaking" collisions

 Head-on collisions are more frequent

 In average, there is a net energy gain

 Taller de Altas Energias 2014, Benasque

Second order Fermi acceleration

Clouds move in random directions

First order Fermi acceleration

- To solve the inefficiency problem, Fermi proposed an alternative in which the particle collides with a shock front
- The particle gains energy every time it crosses the shock, independently from which side
 - Both in the upstream and downstream reference systems the particle sees the medium approaching

$$\left\langle \frac{\Delta E}{E} \right\rangle \sim \frac{V}{c}$$
 $\frac{V}{c} \sim 10^{-2} - 10^{-3}$

Shock fronts move much faster than molecular clouds

It works: It's a efficient mechanism

First order Fermi acceleration

To solve the inefficiency problem, Fermi proposed an alternative in which the particle collides with a shock front

Predicts a power-law spectrum for the accelerated particles:

$$\frac{dN}{dE} = E^{-\frac{R+2}{R-1}}$$

R is the compression factor of the shock front. Typically R=4

$$\frac{dN}{dE} = E^{-2}$$

Astrophysical regions of particle acceleration

- Pulsar magnetoshpereSupernova Shock
 - waves
- Accretion disksRelativistic Jets

