
Exotica Searches at the LHC Lecture 2 of 3

Greg Landsberg DENNING Taller de Altas Energías 2014 Benasque, Spain September 25, 2014 Data recorded: Mon May 21 20:54:48 2012 CEST Run/Event: 194644 / 410307774 Lumi section: 409

Physics

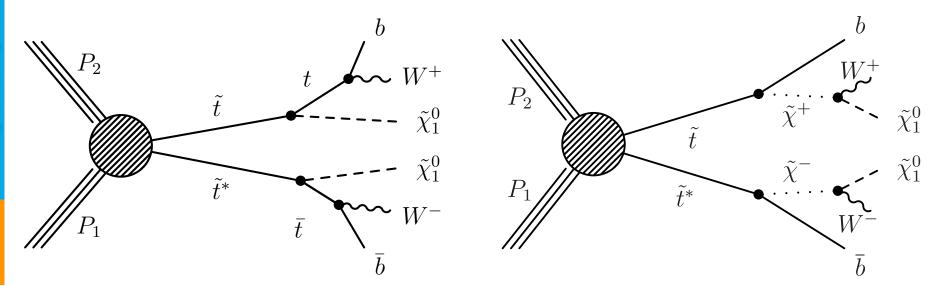
- Choosing the signature
- Signal simulation
- Event selection
- Backgrounds
- Analysis optimization
- Multivariate analysis vs. cut-based one
- Results
- Interpretation
- Next steps
 - Conclusions

က

Physics: Stop Decays

= 2b

K (Cosax+bx)

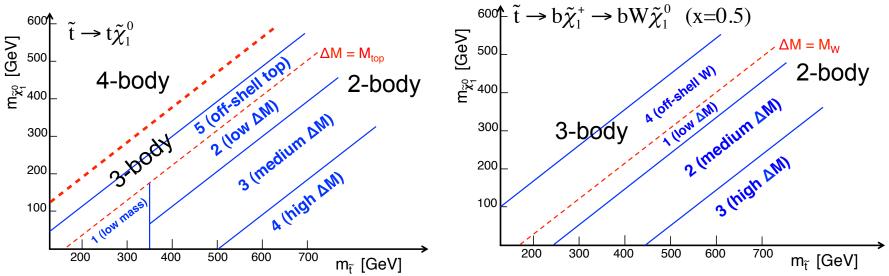

Greg Landsberg

Search for Direct Stop Production in CMS

Direct Stop Signatures

- We will model the stop pair production via a "Simplified Model Scenario", i.e. zooming only on the light SUSY particles that matter for this process and assuming all other SUSY particles to be heavy
- ◆ Focus on just two Feynman diagrams representing relevant production and decay: t̃ → t+χ⁰ and t̃ → b+χ⁺
 - Both result in the same signature: $bbW^+W^-+ME_T$
 - N.B. this is the same signature as tt production (unless both W's decay hadronically) - gives you an idea of the dominant background

Search for Direct Stop Production in CMS


Greg Landsberg

ဖ

Slide

Kinematic Regions

 Depending on the mass differences between the stop and neutralino (chargino), sever nematic regions are defined:

 Different regions correspond to different challenges, so search strategy generally depends on the region

 Given that 4-body decays are enormously suppressed kinematically, the region ΔM < M_W in the tχ⁰ mode is usually covered by other channels, e.g. FCNC t̃ → cχ⁰ decay

~

Slide

Signal Simulation

Monte Carlo Samples

- One does have to rely on MC for estimating signal acceptance
 - Having signal MC is a prerequisite for any search analysis
 - This analysis uses MadGraph 5 LO generator, with up to two additional partons at the matrix element level in a grid of m(t) vs. $m(\chi^0)$
 - The decay of the stops and fragmentation are simulated with Pythia 6 generator, assuming 100% branching fraction in either the $t\chi^0$ or $b\chi^+$ final state
 - Both the 2-body and 3-body decays are considered; in the case of the bχ⁺ final state, an additional mass parameter is used: m(χ⁺) = xm(t) + (1-x)m(χ⁰), with x = 0...1, which defines the chargino mass between the neutralino (x=0) and stop (x=1) masses

One may or may not rely on MC for background estimates

- Still, it's a good idea to have background MC samples generated
- These are generated with a combination of LO generator MadGraph 5 and NLO generators Powheg and MC@NLO
- In some cases (e.g., tt background) several generators are used for crosschecks

Parton Distribution Functions

- As usual, one has to interface MC generators with parton distribution functions (PDFs)
- Normally, one would like to match the order of the generator with the same order of the PDF set
- Thus, for MadGraph we use LO CTEQ6L1 set; for Powheg, we use CT10 NLO PDF set, and for MC@NLO we use CTEQ6M NLO PDF set
- Since Pythia is used for hadronization and fragmentation with all the generators, one has to patch matrix-element jets with the partonshower jets, which is done using special prescription, to avoid double-counting
- The matching parameter defines minimum jet p_T for which the matrix elements are used to describe additional jet production; below this p_T (typically 20 GeV) the emission is described by parton showers
- All the cross sections are normalized to the best available predictions: NLO+NLL for the signal and NLO or NNLO for backgrounds

Signature

Single-Lepton Channel

All jets 44%

1%

2% 2% 1%

2%

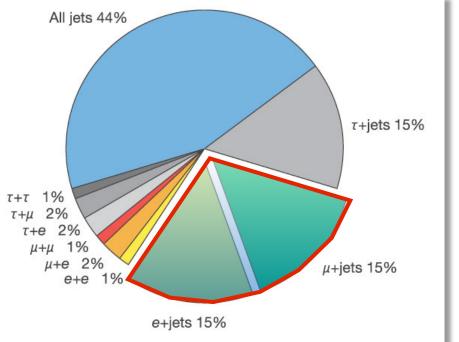
1%

e+jets 15%

τ+jets 15%

 μ +jets 15%

- Now we need to figure out what's the best final state to pursue the search
- The final state depends on the W boson decay channels
 - All hadronic channel has the highest branching fraction, but backgrounds are huge
 - Dilepton channel is clean but the branching fraction is tiny
 - Tau channels are tough
 - Use single-lepton (e+jets, μ +jets) channels as a compromise between frequency (30%) and purity
- The analysis I'm going to describe is CMS, arXiv:1308.1586

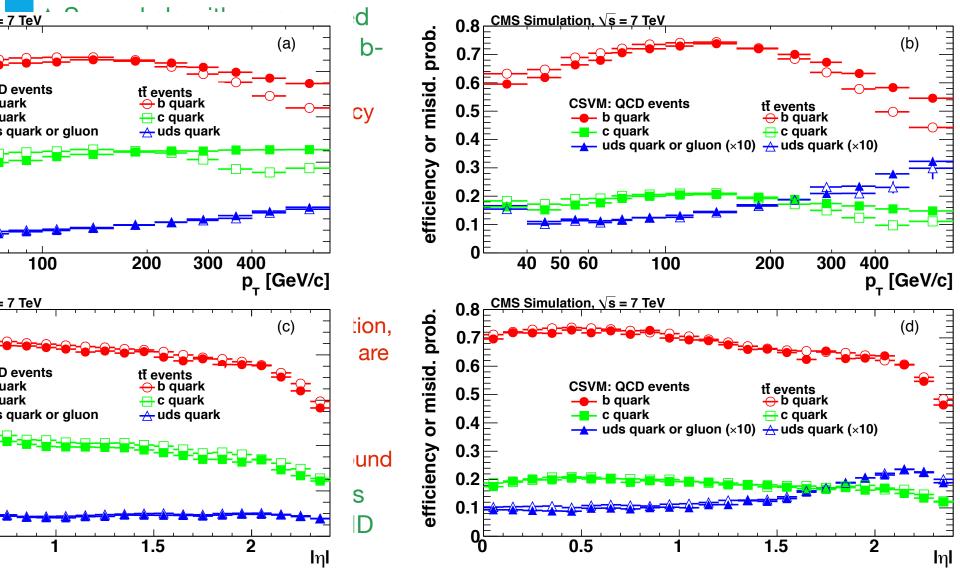


Ŧ

Single-Lepton Channel

- Now we need to figure out what's the best final state to pursue the search
- The final state depends on the W boson decay channels
 - All hadronic channel has the highest branching fraction, but backgrounds are huge
 - Dilepton channel is clean but the branching fraction is tiny
 - Tau channels are tough
 - Use single-lepton (e+jets, µ+jets) channels as a compromise between frequency (30%) and purity
- The analysis I'm going to describe is CMS, arXiv:1308.1586

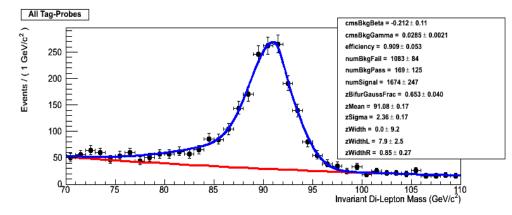
Ŧ


Event Selection

Preselection

- Triggering is not an issue standard top-quark triggers work just fine (singleelectron or single-muon trigger with the thresholds of 27 and 24 GeV, respectively)
- One isolated electron ($p_T > 30$ GeV, $|\eta| < 1.44$) or muon ($p_T > 25$ GeV, $|\eta| < 2.1$)
 - Isolation is defined as a scalar p_T sum of all additional activity in a cone of R=0.3 around the lepton and is required to be 15% of the lepton p_T and less than 5 GeV
- + Veto on a second isolated lepton ($p_T > 5$ GeV), including hadronically decaying τ -lepton (p_T > 20 GeV); also a veto on any additional isolated track $w/p_{T} > 10 \text{ GeV}$
 - Reduces background from dilepton tt decays
- + At least 4 jets (anti-k_T algorithm with R = 0.5), with $p_T > 30$ GeV, $|\eta| < 2.4$
- At least one of them is tagged as a b-jet
 - Reduces W+jets background
- ♦ ME_T > 100 GeV
- All objects are reconstructed using CMS particle-flow algorithm, which 13 combines the information from all the sub-detectors in an optimal way

b-tagging

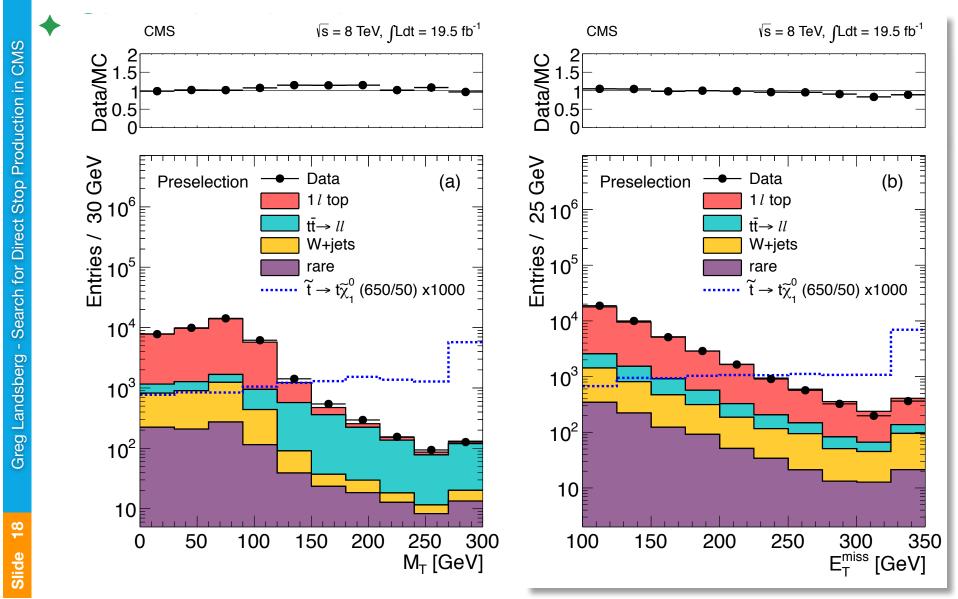


BROWN

Efficiency Calculation

- "Tag-and-probe" method is used, utilizing Z(ee) and Z($\mu\mu$) events
- Look at the Z(II) events, apply tight requirements on one lepton ("tag") and very loose requirements on the other ("probe")
- Estimate efficiency of standard requirements by counting the fraction of probe leptons passing these standard requirements
 - Fit for the number of events in the Z-peak, by subtracting the backgrounds
- Typical efficiency: 80%

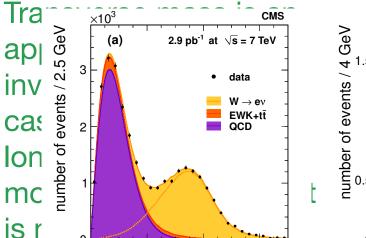
15


Backgrounds

- In the regions of interest, there are five classes of backgrounds, in decreasing significance:
 - tt → II + jets + ME_T, with a lost lepton (three undetected particles, similar to the signal)
 - tt → I + jets + ME_T, similar to the signal, but ME_T comes from a single neutrino; also some contribution from single-top-quark production
 - ttV, VV, VVV, tW electroweak and other rare backgrounds
 - W+jets
 - Multijets with misidentified leptons (negligible)
- Use hybrid method for background determination: MC based, with validation and correction from control regions (CR)

17

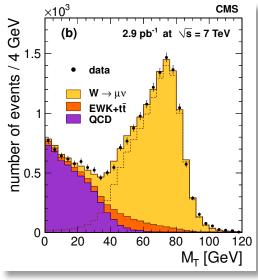
Missing Transverse Energy



Transverse Mass

 $M_{\rm T} = \sqrt{2p_{\rm T}E_{\rm T}}(1 - \cos\Delta\phi)$

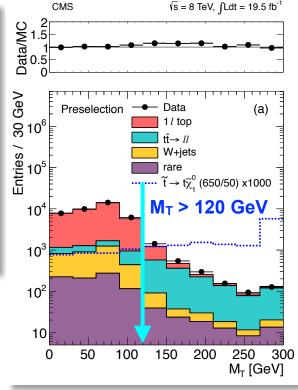
Standard variable when dealing with signatures containing ME_T

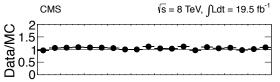

✦ Classical example: W(Iv)

40

60

∉_⊤ [GeV]




20

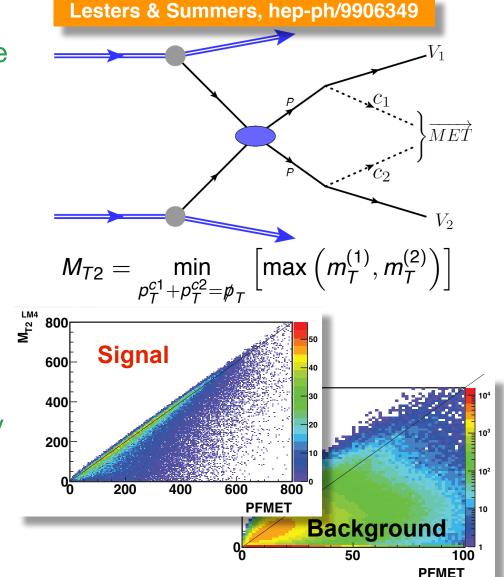
0

du

19

Slide

BROWN

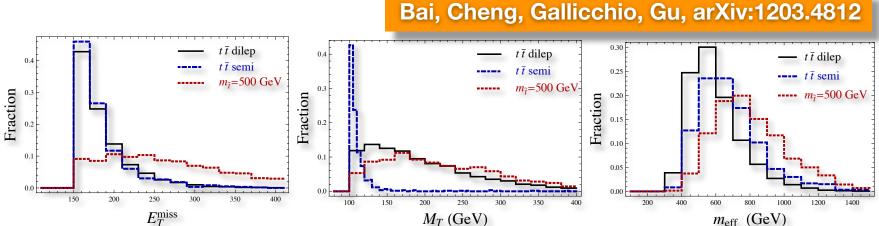


The M_{T2} Variable

- M_{T2}: **"stransverse mass"** a generalization of the transverse mass in case of a pair of invisible particles
- For a simplified case of no extra jets and zero masses for visible and invisible systems:

$$(M_{T2})^2 \simeq 2 p_T^{vis(1)} p_T^{vis(2)} (1 + cos\phi_{12})$$

- M_{T2} ~ ME_T for symmetric SUSY-like topologies
- M_{T2} kills QCD background very efficiently:
 - M_{T2} ~ 0 for dijets
 - M_{T2} < ME_T in case of mismeasured dijets



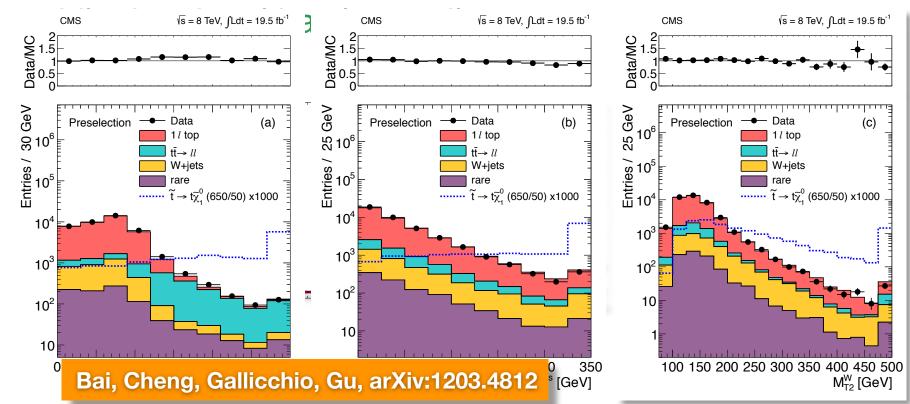
20

More M_{T2} Variables

- The main variable used in this analysis is a variation of M_{T2} variable, known as M^W_{T2} variable, which is the minimum mother mass compatible with all the decay products and on-shell constraints
- It is designed to specifically kill tt → II+jets+ME_T background with a lost lepton
- This is a difficult background to deal with as it looks similar to the signal in other distributions, particularly in transverse mass M_T
- The trick of finding the right M_{T2} variable is how to partition the final state particle into visible and invisible states

5

Slid

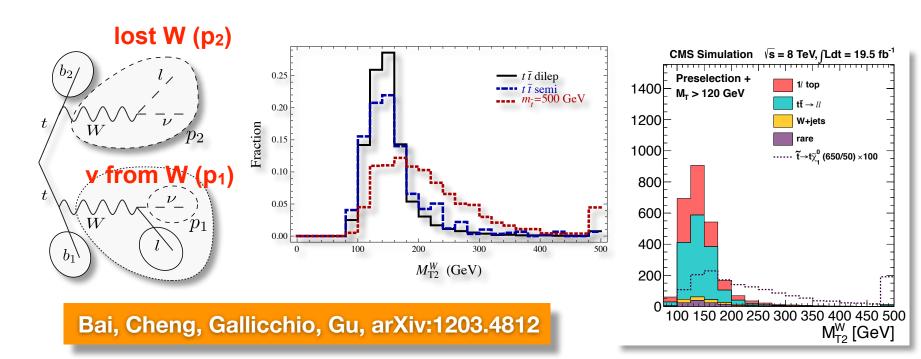


M^w_{T2} Variable

Here is the definition of the M^W_{T2} variable designed to reconstruct tt events with a lost lepton:

 $M_{T2}^{W} = \min \left\{ m_{y} \text{ consistent with: } \begin{bmatrix} \vec{p}_{1}^{T} + \vec{p}_{2}^{T} = \vec{E}_{T}^{\text{miss}}, \ p_{1}^{2} = 0, \ (p_{1} + p_{\ell})^{2} = p_{2}^{2} = M_{W}^{2}, \\ (p_{1} + p_{\ell} + p_{b_{1}})^{2} = (p_{2} + p_{b_{2}})^{2} = m_{y}^{2} \end{bmatrix} \right\}$

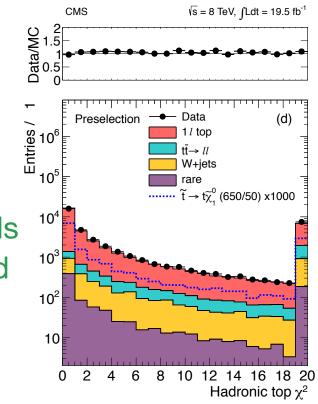
• The tt events with lost lepton exhibit endpoint at $m_y = m_t$,



M^w_{T2} Variable

 Here is the definition of the M^W_{T2} variable designed to reconstruct tt events with a lost lepton:

 $M_{T2}^{W} = \min \left\{ m_{y} \text{ consistent with: } \left[\vec{p}_{1}^{T} + \vec{p}_{2}^{T} = \vec{E}_{T}^{\text{miss}}, p_{1}^{2} = 0, (p_{1} + p_{\ell})^{2} = p_{2}^{2} = M_{W}^{2}, \\ (p_{1} + p_{\ell} + p_{b_{1}})^{2} = (p_{2} + p_{b_{2}})^{2} = m_{y}^{2} \right] \right\}$ $\bullet \text{ The tt events with lost lepton exhibit endpoint at } m_{y} = m_{t},$ while the signal has long tail


Kinematic Fit

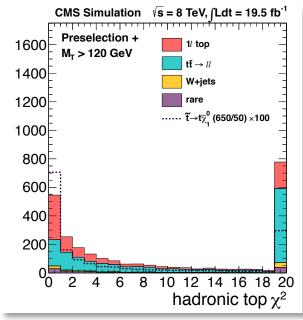
In the case when top quark in the t̃ → t+χ⁰ decay is on-shell (i.e., m(t̃) > m_t + m(χ⁰)) the three jets from the t → Wb → jjb decay should satisfy two mass constraints: m(jj) ~ m_W and m(jjb) ~ m_t
 Construct a χ² variable for each allowed combination (which respects b-tag jet assignments)

$$\chi^{2} = \frac{(M_{j_{1}j_{2}j_{3}} - M_{top})^{2}}{\sigma^{2}_{j_{1}j_{2}j_{3}}} + \frac{(M_{j_{1}j_{2}} - M_{W})^{2}}{\sigma^{2}_{j_{1}j_{2}}}$$

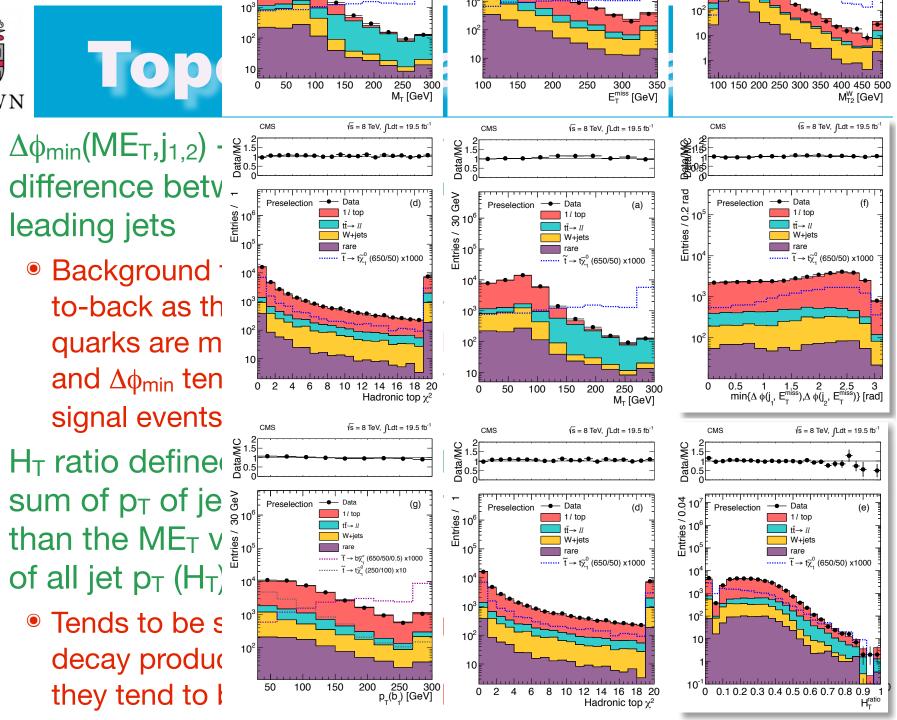
• Find the combination that minimizes the χ^2 (χ^2_{min})

 The χ²_{min} should be small for backgrounds with hadronic top-quark decays; it should be larger for events w/o, e.g. W+jets background or dilepton tt with a lost lepton

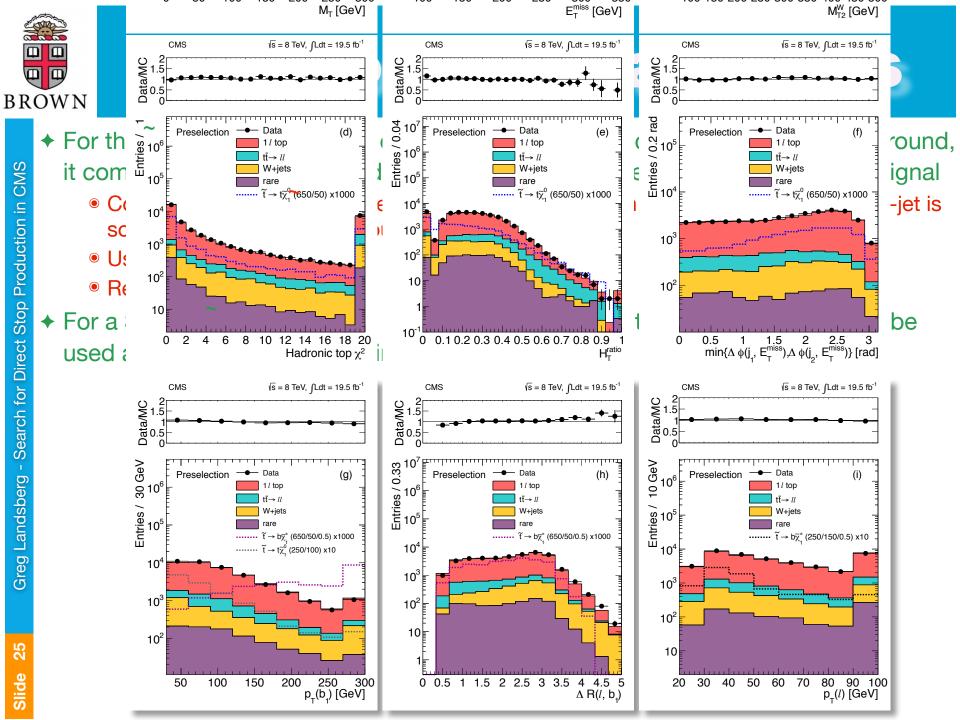
23


Kinematic Fit

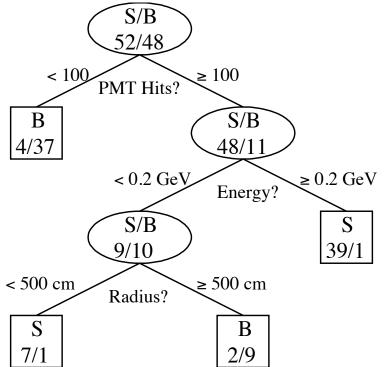
In the case when top quark in the t̃ → t+χ⁰ decay is on-shell (i.e., m(t̃) > m_t + m(χ⁰)) the three jets from the t → Wb → jjb decay should satisfy two mass constraints: m(jj) ~ m_W and m(jjb) ~ m_t
Construct a χ² variable for each allowed combination (which respects b-tag jet assignments)

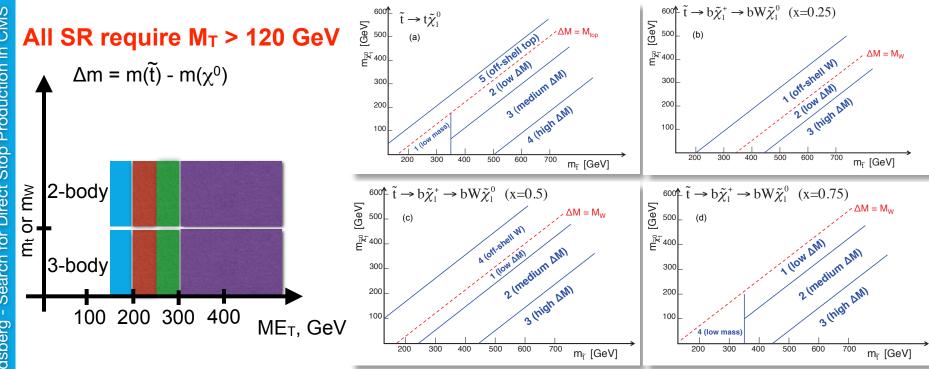

$$\chi^{2} = \frac{(M_{j_{1}j_{2}j_{3}} - M_{\text{top}})^{2}}{\sigma_{j_{1}j_{2}j_{3}}^{2}} + \frac{(M_{j_{1}j_{2}} - M_{\text{W}})^{2}}{\sigma_{j_{1}j_{2}}^{2}}$$

• Find the combination that minimizes the χ^2 (χ^2_{min})


 The χ²_{min} should be small for backgrounds with hadronic top-quark decays; it should be larger for events w/o, e.g. W+jets background or dilepton tt with a lost lepton

23


BROWN


Optimization

- A number of variables have discriminating power between the signal and various backgrounds
- No single variable is "winning"
- Variables are correlated
- Two approaches:
 - Simple cut-based approach, which treats each variable independently and puts a cutoff on each of them
 - Multivariate approach, when all the variables are combined
 in a likelihood reflecting how signal-like they are
 - Practical implementation as a boosted decision tree via TMVA Root package; trained on signal and backgrounds separately

Signal Regions

Cut-based analysis: 8 signal regions (SR) per channel

- BDT analysis: signal regions based on the BDT output value; several networks are trained depending on the phase space probed
- + Each BDT has single SR (BDT > x), except for $t\chi^0$, region 1 and $b\chi^+$, x = 0.5, region 2, each of which has 2 working points (tight and loose)
 - 6 SR for $t\chi^0$ and 12 SR for the $b\chi^+$ analysis

Greg Landsberg - Search for Direct Stop Production in CMS

27

Slide

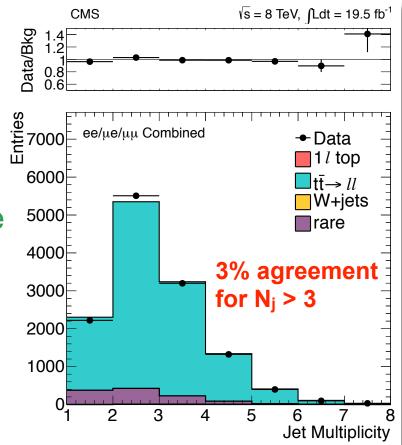
BROWN

The following selections are used for signal regions:

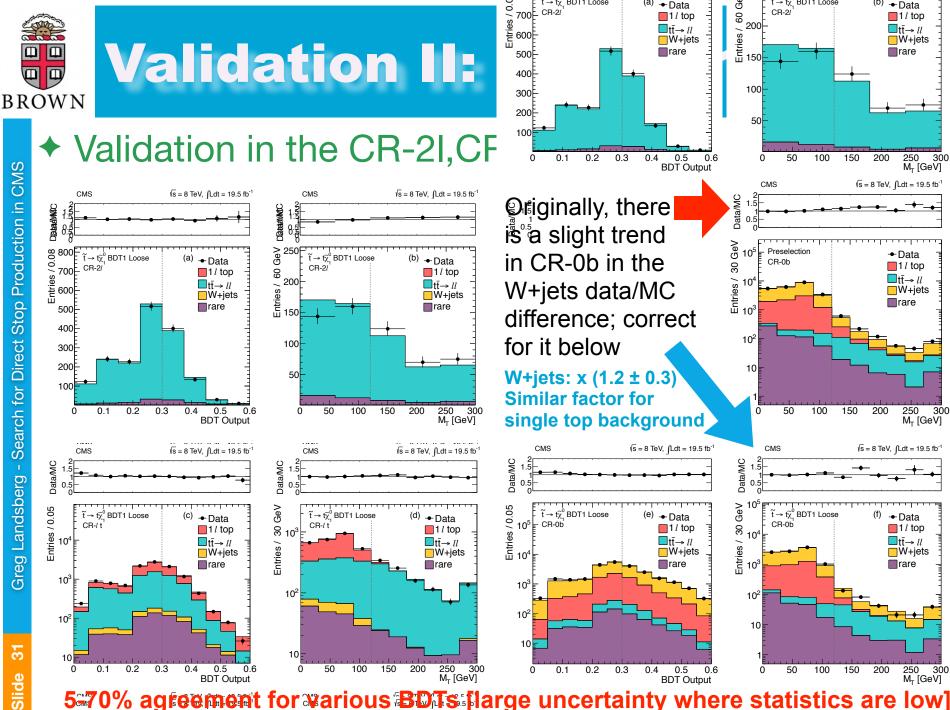
	${ ilde t} o t {\widetilde \chi}_1^0$			$\widetilde{\mathfrak{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$			
		Cut-l	pased		Cut-based		
Selection	BDT	Low ΔM	High ΔM	BDT	Low ΔM	High ΔM	
$E_{\rm T}^{\rm miss}$ (GeV)	yes	> 150, 200,	> 150, 200,	yes	> 100, 150,	> 100, 150,	
		250, 300	250, 300	-	200, 250	200, 250	
$M_{\rm T2}^{\rm W}$ (GeV)	yes		>200	yes		>200	
$\min \Delta \phi$	yes	>0.8	> 0.8	yes	>0.8	> 0.8	
$H_{\rm T}^{\rm ratio}$	yes			yes			
Hadronic top χ^2	(on-shell top)	<5	<5	5			
Leading b-tagged jet $p_{\rm T}$ (GeV)	(off-shell top)			yes		>100	
$\Delta R(\ell, \text{leading b-tagged jet})$				yes			
Lepton $p_{\rm T}$ (GeV)				(off shell W)			

- BDT analysis uses more inputs, in a more complete way, and offers ~40% improvement in sensitivity w.r.t. the cut-based analysis
- The main result is therefore based on the BDT analysis, with the cut-based analysis used as a cross-check

28


Control Regions

- The analysis uses three control regions:
 - CR-2l requires 2 OS leptons
 - Dominated by tt dilepton events
 - CR-It requires single lepton and an additional track or a hadronically decaying tau lepton
 - Dominated by the tt semileptonic and dilepton events
 - CR-0b requires no b-tagged jets
 - Dominated by the W+jets background
- CR do not include M_T > 120 GeV cut; use M_T distribution after BDT or cut-based selections as the test of accuracy of the background predictions and correct them if needed
- ◆ To minimize uncertainties from tt cross section, integrated luminosity, efficiency, etc., we normalize the MC-based predictions in the low-M_T region (50 < M_T < 80 GeV) after subtracting rare backgrounds, and then extrapolate to the M_T > 120 GeV signal region



Validation I: ISR/FSR

- The main background is from dilepton tt events; they only have two tree-level jets, both from b-quarks
- The preselection requires four or more jets with at least one b-tag
 CMS
 VS = 8 TeV, fLdt = 19.5 fb⁻¹
- Two extra jets for the dominant background must come from ISR or FSR - need to ensure correct modeling
- Test with a CR-2I control sample requiring two OS leptons and at least one b-tagged jet
- For the ee and μμ channels, require the dilepton mass away from the Z-peak

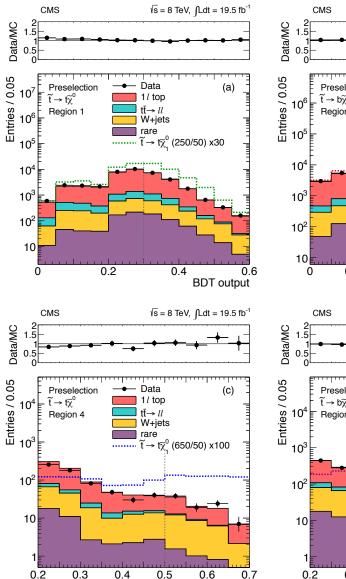
30

5370% agreement for various BDTs [large uncertainty where statistics are low]

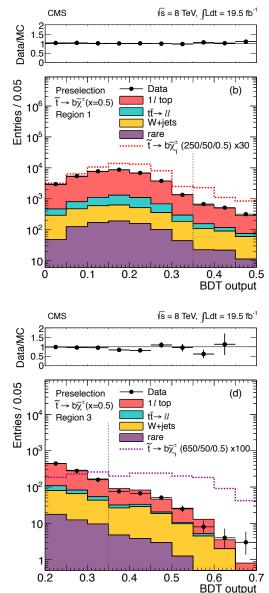
Systematic Uncertainties

Here are the main systematic uncertainties for the tχ⁰ analysis:

$ ext{t} ightarrow ext{t} \chi_1^\circ$										
Sample	BDT1–Loose	BDT1–Tight	BDT2	BDT3	BDT4	BDT5				
$M_{\rm T}$ -peak data and MC (stat)	1.0	2.1	2.7	5.3	8.7	3.0				
$t\bar{t} ightarrow \ell\ell \ N_{ m jets} \ { m modeling}$	1.7	1.6	1.6	1.1	0.4	1.7				
$t\bar{t} \rightarrow \ell\ell$ (CR- ℓt and CR- 2ℓ tests)	4.0	8.2	11.0	12.5	7.2	13.8				
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4				
t $ar{ extsf{t}} ightarrow \ell ar{\ell}$ (stat.)	1.1	2.8	3.4	7.0	7.4	3.3				
W+jets cross section	1.6	2.2	2.8	1.7	2.7	2.2				
W+jets (stat.)	1.1	1.9	2.0	4.6	10.8	5.2				
W+jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6				
$1-\ell$ top (stat.)	0.4	0.8	0.8	1.4	4.4	1.2				
$1-\ell$ top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1				
Rare processes cross section	1.8	3.0	4.0	8.1	15.7	0.7				
Total	13.4	17.1	19.3	27.8	38.4	20.2				



Results



Results: Preselection

- After adjustments, based on data/MC comparison in the CR, the agreement in the signal region looks good
- The figure shows the agreements between the data and background predictions in the BDT output for four out of 16 BDTs used in the analysis
- Similar agreement is found for other BDTs
- Only event preselection is applied; no M_T > 120 GeV requirement used

BDT output

34

Here are the results of the counting experiment in all the signal regions:

$ ext{t} o ext{t} \chi_1^{ ext{o}}$						
Sample	BDT1-Loose	BDT1–Tight	BDT2	BDT3	BDT4	BDT5
$t\bar{t} o \ell \ell$	438 ± 37	68 ± 11	46 ± 10	5 ± 2	0.3 ± 0.3	48 ± 13
1ℓ top	251 ± 93	37 ± 17	22 ± 12	4 ± 3	0.8 ± 0.9	30 ± 12
W + jets	27 ± 7	7 ± 2	6 ± 2	2 ± 1	0.8 ± 0.3	5 ± 2
Rare	47 ± 23	11 ± 6	10 ± 5	3 ± 1	1.0 ± 0.5	4 ± 2
Total	763 ± 102	124 ± 21	85 ± 16	13 ± 4	2.9 ± 1.1	87 ± 18
Data	728	104	56	8	2	76
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 \ (250/50)$	285 ± 8.5	50 ± 3.5	28 ± 2.6	4.4 ± 1.0	0.3 ± 0.3	34 ± 2.9
$\widetilde{ ext{t}} ightarrow ext{t} \widetilde{\chi}_1^{m{0}}$ (650/50)	12 ± 0.2	7.2 ± 0.2	9.8 ± 0.2	6.5 ± 0.2	4.3 ± 0.1	2.9 ± 0.1

Similar results in the eight SR for the cut-based analysis:

Sample	$E_{\rm T}^{\rm miss} > 150 { m GeV}$	$E_{\rm T}^{\rm miss} > 200 { m GeV}$	$E_{\rm T}^{\rm miss} > 250 { m GeV}$	$E_{\rm T}^{\rm miss} > 300 {\rm GeV}$		
Low ΔM Selection						
$t\bar{t} ightarrow \ell\ell$	131 ± 15	42 ± 7	17 ± 5	5.6 ± 2.5		
1ℓ top	94 ± 47	30 ± 19	9 ± 6	3.1 ± 2.4		
W + jets	10 ± 3	5 ± 1	2 ± 1	1.0 ± 0.4		
Rare	16 ± 8	7 ± 4	4 ± 2	1.8 ± 0.9		
Total	251 ± 50	83 ± 21	31 ± 8	11.5 ± 3.6		
Data	227	69	21	9		
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 \ (250/50)$	108 ± 3.7	32 ± 2.0	12 ± 1.2	5.2 ± 0.8		
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^{\hat{0}} (650/50)$	8.0 ± 0.1	7.2 ± 0.1	6.2 ± 0.1	4.9 ± 0.1		
High ΔM Selection						
$t\bar{t} \to \ell\ell$	8 ± 2	5±2	3.2 ± 1.4	1.4 ± 0.9		
1ℓ top	13 ± 6	6 ± 4	3.0 ± 2.2	1.4 ± 1.0		
W + jets	4 ± 1	2 ± 1	1.5 ± 0.5	0.9 ± 0.3		
Rare	4 ± 2	3 ± 1	1.8 ± 0.9	1.0 ± 0.5		
Total	29 ± 7	17 ± 5	9.5 ± 2.8	4.7 ± 1.4		
Data	23	11	3	2		
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 \ (250/50)$	10 ± 1.1	4.6 ± 0.8	2.3 ± 0.5	1.4 ± 0.4		
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 \ (650/50)$	4.9 ± 0.1	4.7 ± 0.1	4.3 ± 0.1	3.7 ± 0.1		

36

Results: BDT, $b\chi^+$

37

Slide

Also, no excess in the chargino channel BDT analysis:

$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+ \; x = 0.25$						
Sample	BDT1	BDT2	BDT3			
$t\bar{t} ightarrow \ell\ell$	18 ± 4	2.2 ± 1.3	1.2 ± 1.0			
1ℓ top	10 ± 5	4.0 ± 1.8	1.5 ± 0.8			
W + jets	3 ± 1	2.0 ± 0.7	0.7 ± 0.3			
Rare	4 ± 2	1.6 ± 0.8	1.0 ± 0.5			
Total	35 ± 6	9.8 ± 2.4	4.4 ± 1.4			
Data	29	7	2			
$\widetilde{\mathfrak{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$ (450/50/0.25)	19 ± 2.9	11 ± 2.2	5.2 ± 1.5			
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$ (600/100/0.25)	8.8 ± 0.8	7.5 ± 0.8	5.6 ± 0.7			

 $\widetilde{\mathrm{t}} \rightarrow \mathrm{b} \widetilde{\chi}^+ \ x = 0.5$

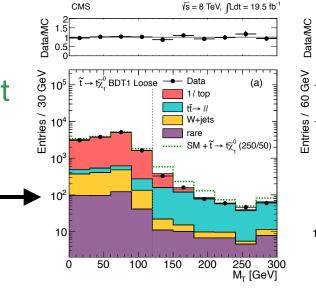
	ι ·	$7 D_{\Lambda} x = 0.0$			
Sample	BDT1	BDT2-Loose	BDT2–Tight	BDT3	BDT4
$t\bar{t} o \ell \ell$	40 ± 5	21 ± 4	4 ± 2	6 ± 2	100 ± 16
1ℓ top	24 ± 10	15 ± 7	4 ± 3	4 ± 2	33 ± 12
W+jets	5 ± 1	5 ± 1	2 ± 1	3 ± 1	5 ± 1
Rare	8 ± 4	8 ± 4	3 ± 1	4 ± 2	8 ± 4
Total	77 ± 12	50 ± 9	13 ± 4	17 ± 4	146 ± 21
Data	67	35	12	13	143
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+ ext{(250/50/0.5)}$	45 ± 7.6	24 ± 5.2	5.7 ± 2.4	5.2 ± 2.6	55 ± 8.1
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$ (650/50/0.5)	3.5 ± 0.4	9.5 ± 0.7	5.6 ± 0.5	8.3 ± 0.6	3.2 ± 0.4

$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+ \ x = 0.75$						
Sample	BDT1	BDT2	BDT3	BDT4		
$t\bar{t} \rightarrow \ell \ell$	37 ± 5	9 ± 2	3.1 ± 1.3	248 ± 22		
1ℓ top	17 ± 9	6 ± 5	1.6 ± 1.6	188 ± 70		
W + jets	4 ± 1	4 ± 1	1.6 ± 0.6	22 ± 6		
Rare	4 ± 2	4 ± 2	1.8 ± 0.9	20 ± 10		
Total	61 ± 10	22 ± 6	8.1 ± 2.3	478 ± 74		
Data	50	13	5	440		
$\widetilde{t} ightarrow b \widetilde{\chi}^+$ (250/50/0.75)	115 ± 13	21 ± 5.6	8.0 ± 3.7	518 ± 28		
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+$ (650/50/0.75)	3.9 ± 0.4	8.4 ± 0.6	6.8 ± 0.6	5.5 ± 0.5		

... or cut-based analysis:

Sample	$E_{\rm T}^{\rm miss} > 100 { m GeV}$	$E_{\rm T}^{\rm miss} > 150{ m GeV}$	$E_{\rm T}^{\rm miss} > 200 { m GeV}$	$E_{\rm T}^{\rm miss} > 250 { m GeV}$			
Low ΔM Selection							
$\overline{t\bar{t}} \to \ell\ell$	875 ± 57	339 ± 23	116 ± 14	40 ± 9			
1ℓ top	658 ± 192	145 ± 70	41 ± 24	14 ± 9			
W+jets	59 ± 15	21 ± 5	8 ± 2	4 ± 1			
Rare	70 ± 35	33 ± 17	16 ± 8	8 ± 4			
Total	1662 ± 203	537 ± 75	180 ± 28	66 ± 13			
Data	1624	487	151	52			
$\widetilde{t} \rightarrow b \widetilde{\chi}^+ (450/50/0.25)$	47 ± 3.3	33 ± 2.7	19 ± 2.0	8.7 ± 1.4			
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+$ (600/100/0.25)	15 ± 0.7	13 ± 0.7	11 ± 0.6	7.9 ± 0.5			
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+$ (250/50/0.5)	419 ± 17	157 ± 9.9	52 ± 5.4	21 ± 3.4			
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+$ (650/50/0.5)	14 ± 0.6	13 ± 0.5	11 ± 0.5	8.4 ± 0.4			
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+$ (250/50/0.75)	854 ± 26	399 ± 18	144 ± 10	56 ± 6.4			
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$ (650/50/0.75)	17 ± 0.7	16 ± 0.6	13 ± 0.6	11 ± 0.5			

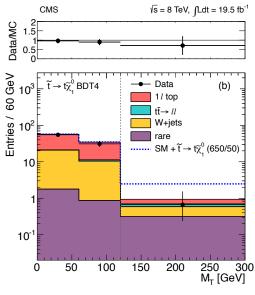
High ΔM Selection

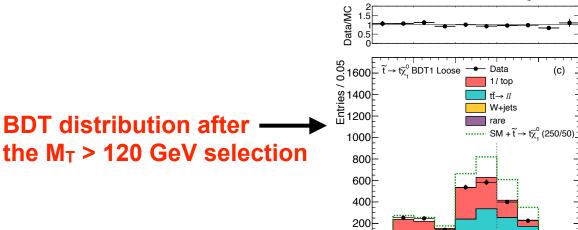

	Tigit 21/1 Selection						
$t\bar{t} ightarrow \ell\ell$	25 ± 5	12 ± 3	7 ± 2	2.9 ± 1.5			
1ℓ top	35 ± 10	15 ± 6	6 ± 3	2.7 ± 1.8			
W+jets	9 ± 2	5 ± 1	2 ± 1	1.8 ± 0.6			
Rare	9 ± 5	7 ± 3	4 ± 2	2.4 ± 1.2			
Total	79 ± 12	38 ± 7	19 ± 5	9.9 ± 2.7			
Data	90	39	18	5			
$\widetilde{t} \rightarrow b \widetilde{\chi}^+ (450/50/0.25)$	30 ± 2.7	23 ± 2.3	15 ± 1.8	7.3 ± 1.3			
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+$ (600/100/0.25)	11 ± 0.6	9.7 ± 0.6	8.4 ± 0.6	6.1 ± 0.5			
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+$ (250/50/0.5)	37 ± 4.8	23 ± 3.8	11 ± 2.6	5.0 ± 1.7			
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+$ (650/50/0.5)	11 ± 0.5	9.8 ± 0.5	8.6 ± 0.4	6.7 ± 0.4			
$\widetilde{ ext{t}} ightarrow ext{b} \widetilde{\chi}^+$ (250/50/0.75)	32 ± 5.2	23 ± 4.4	11 ± 2.9	3.6 ± 1.4			
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$ (650/50/0.75)	9.2 ± 0.5	8.4 ± 0.5	7.5 ± 0.4	6.3 ± 0.4			

BDT Outputs for t\chi^0 SR

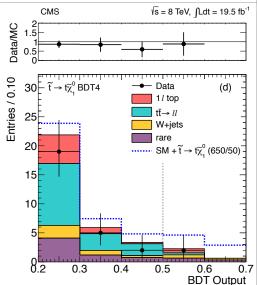
Here are the BDT outputs for the loosest (left column) and tightest (right column) SR:

M_T distribution after the BDT selection

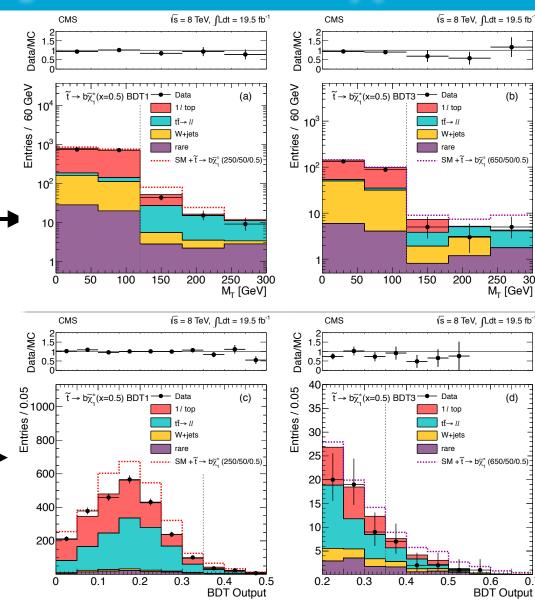

0.2


 $\sqrt{s} = 8 \text{ TeV}, \ \int \text{Ldt} = 19.5 \text{ fb}^{-1}$

0.4


BDT Output

(C)


CMS

BDT Outputs for bx⁺ SR

Here are the BDT outputs for the loosest (left column) and tightest (right column) SR for the x = 0.5 case: **M**_T distribution after the BDT selection

(b)

W+jets

200

W+jets

rare

250

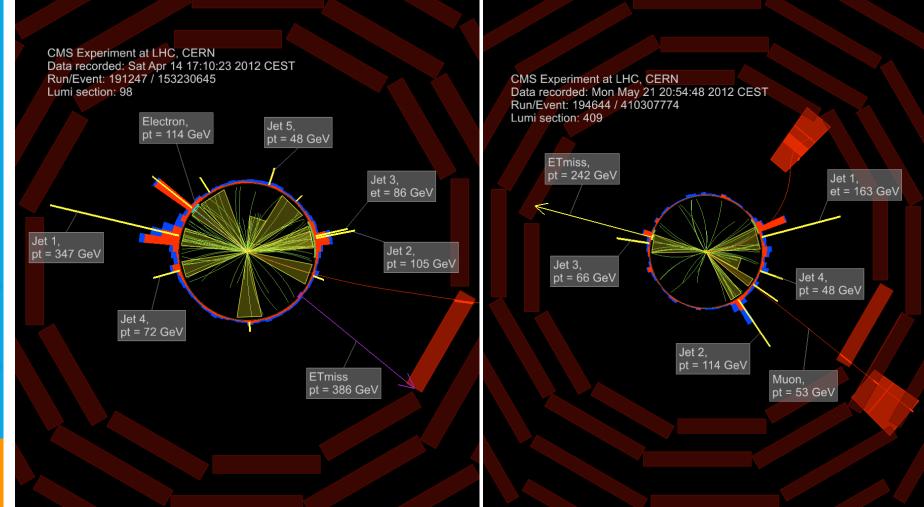
M_T [GeV]

(d)

0.6

BDT Output

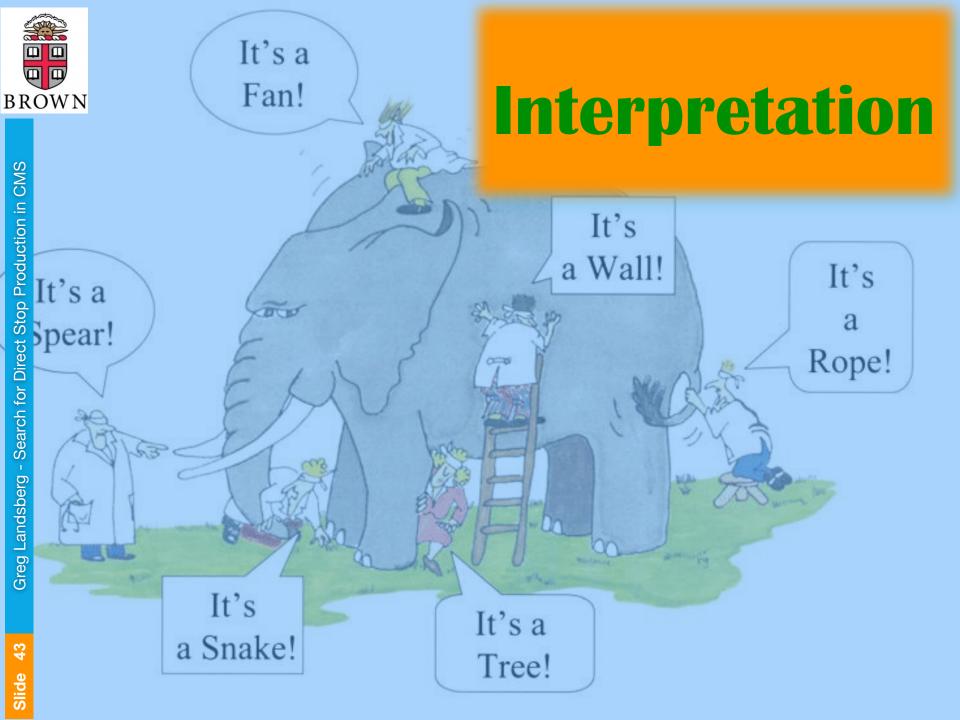
0.7


300

BDT distribution after the $M_T > 120$ GeV selection

Candidate Events

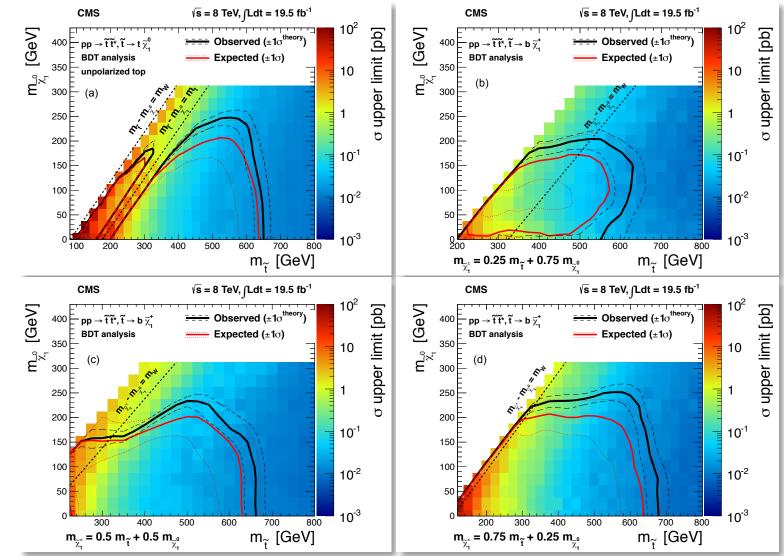
Here is how the signal would've looked like...


4

Results: Summary

- The data agree with the SM background prediction corrected for the data/MC discrepancies in the CR within 1.0-1.5 standard deviations in all the search regions, both for the cut-based and BDT analyses
- Having seen no evidence for stop production, we proceed in interpreting our results in terms of limits on the stop production cross section, as a function of the stop mass, neutralino mass, and the x parameter in case of the bχ⁺ decay channel
- The limits are set from the counting experiment in the most sensitive signal region for any given mass point
- In general could be improved by combining several search regions, but as the improvement is small (SR are largely overlapping) go for a simpler analysis
- Further improvement could generally be achieved by the shape-based analysis, but this requires a much more sophisticated treatment of the systematic uncertainties, not possible with the present statistics
- Will ultimately be used for Run 2, once statistics increase significantly

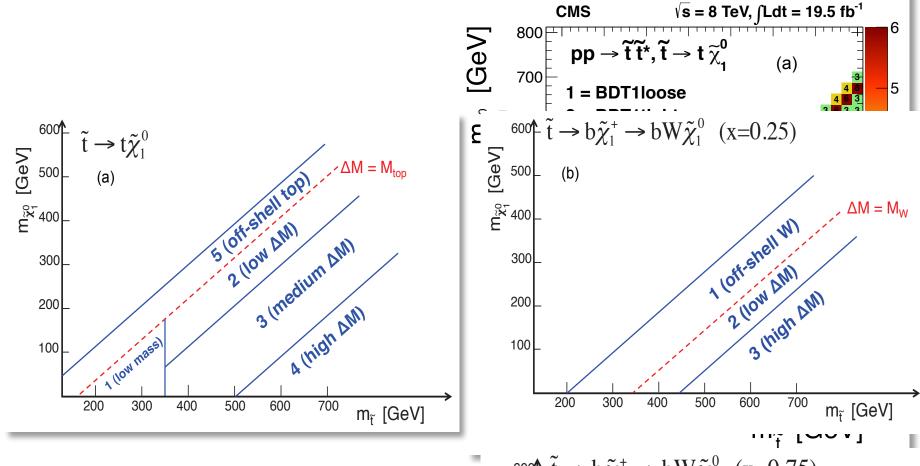
42


Interpretation

- Use the LHC-style CL_s method (see Carlos Mañá's lectures) to set 95% CL limits
- Use standard convention of treating experimental and theoretical uncertainties:
 - Uncertainties are propagated into the limits via nuisance parameters, represented typically by log-normal distributions
 - Experimental uncertainties are shown as ±1 standard deviation band around the expected limits
 - Theoretical uncertainties (renormalization/factorization scale variation, PDFs, etc.) are shown as ±1 standard deviation band around the observed limits

Limits

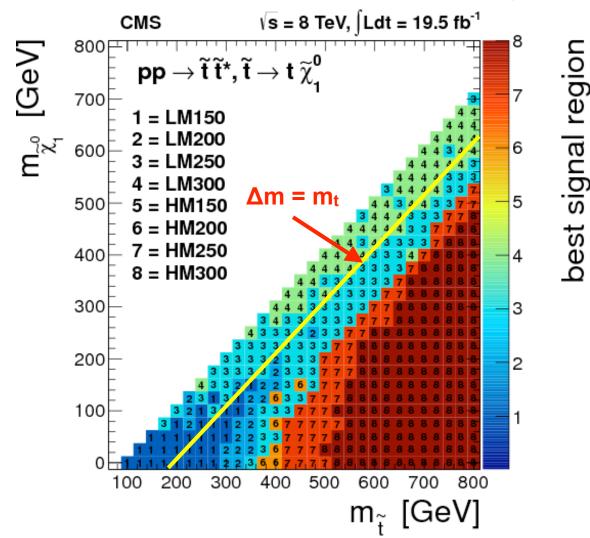
Here are the limits in four scenarios studied:

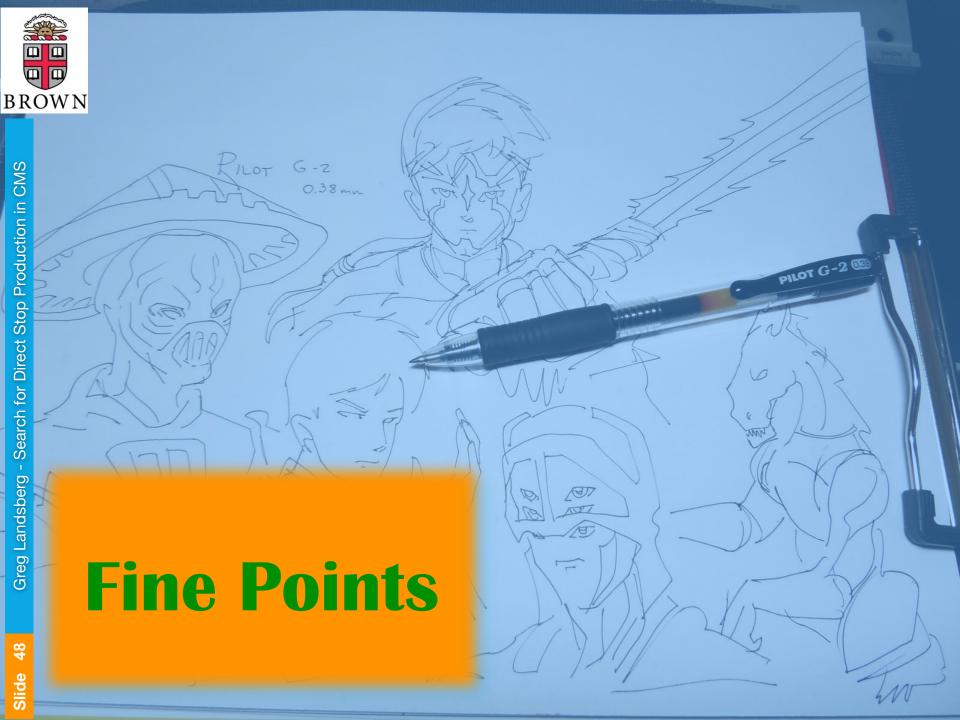

Greg Landsberg - Search for Direct Stop Production in CMS

46

Slide

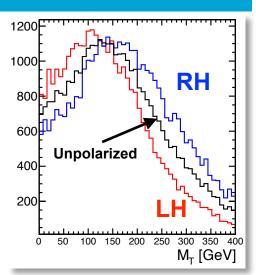
Most Sensitive SRs

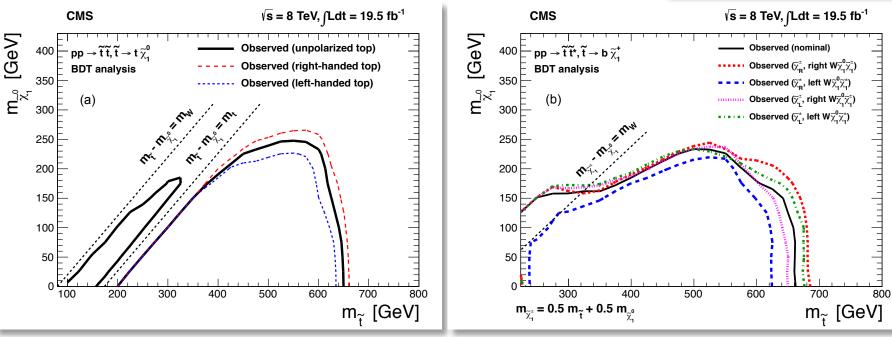

- Which region does the sensitivity come from?
- In most parts of the phase space the best SR matches the a priori optimization



Most Sensitive SRs: Cut-Based

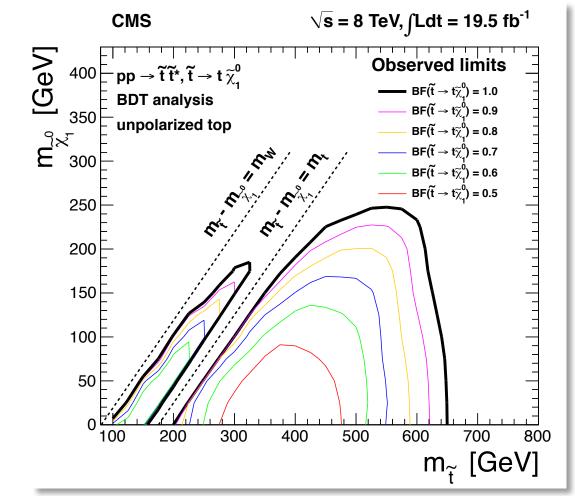
Similar situation for the cut-based analysis:


47



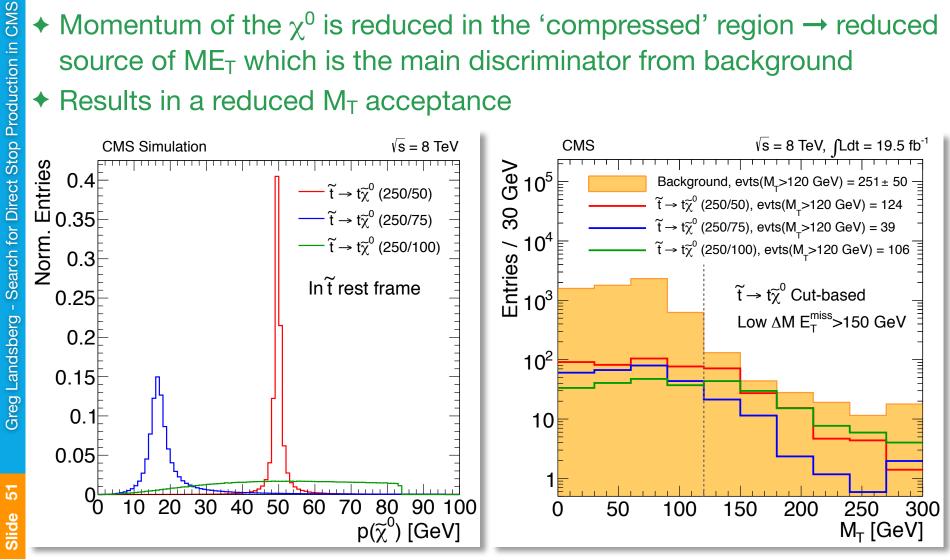
Fine Points: Polarization

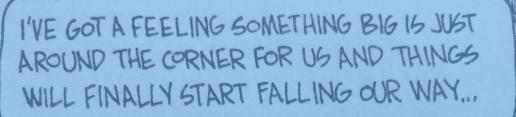
- Top quark in the stop decay may be produced polarized
- The main limits correspond to the case of no polarization
- Important to study the effect of polarization
- The effect turns out to be not so large: 10-20 GeV in the limits


40

Fine Points: Branching Fraction

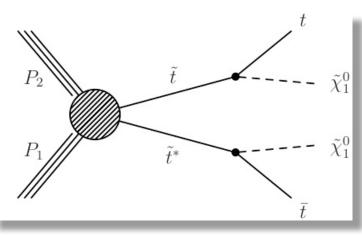
• What if $B(\tilde{t} \rightarrow t\chi^0)$ is less than 100%?


Conservative analysis, ignoring other stop decays

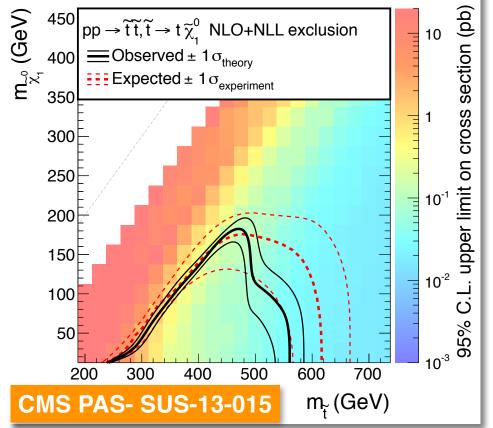


Fine Points: Sensitivity Near m_t

- Reduced sensitivity in region $\Delta m = m(\tilde{t}) m(\chi^0) \sim m_t$
- + Momentum of the χ^0 is reduced in the 'compressed' region reduced source of ME_T which is the main discriminator from background
- Results in a reduced M_T acceptance

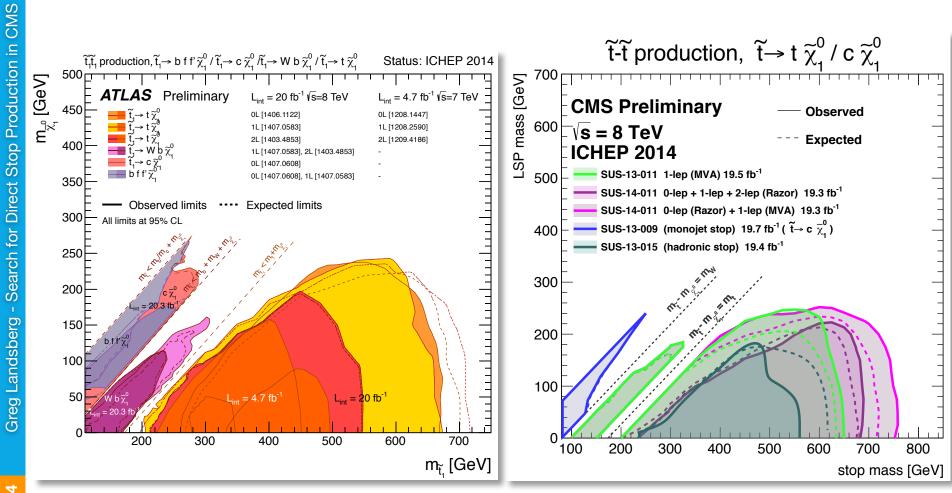

Next Steps

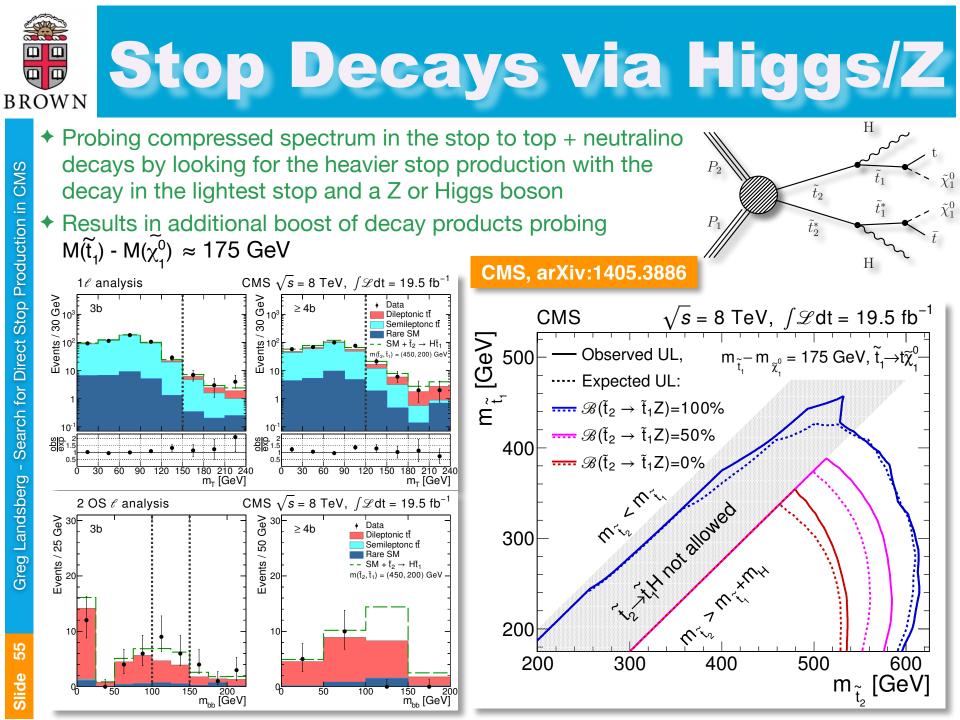
52



Direct Stop: All Hadronic

- This is quite sensitive, and yet the toughest channel at the LHC
- Simple reinterpretation of the existing analyses is not sensitive enough
- Requires a dedicated optimized tour-de-force analysis:
 - Top-quark full or partial reconstruction
 - W+jets and tt with τ_h and lost leptons (from W(µv)+jets with embedded τ_h), invisible Z decays (from Z(µµ)), and multijets (made negligible)




CMS Preliminary, 19.4 fb⁻¹, $\sqrt{s} = 8 \text{ TeV}$

Direct Stop: Summary

Conclusions

- Direct stop pair production is a classic example of a sophisticated search analysis:
 - Well-motivated
 - Uses advanced kinematic variables
 - Uses both cut-and-count and modern multivariate techniques
 - Combines several channels
 - Offers high sensitivity to a broad class of models
- Unfortunately, the search came empty-handed, but it set stringent limits on stop production and covered large fraction of "natural" phase space
- The analysis will remain a flagship SUSY search in Run 2 and will either result in a discovery or significant limits on the very "natural" SUSY possibility!

56

Thank You!

