Taller de Altas Energías

Benasque, September 24th 2014

Cosmic Rays

Sergio Navas Dpto. Física Teórica y del Cosmos & *CAFPE* Universidad de Granada

Astroparticle Physics

... is a branch of **particle physics** that studies elementary particles of astronomical origin and their relation to **astrophysics** and **cosmology**. It is a relatively *new field of research*...

Astroparticle Physics related talks:

- ✓ Dark Matter ← talk by David Cerdeño [DM] Tuesday 23th
- ✓ Dark Energy
- ✓ Gamma Ray Astronomy ← talk by Marcos López [APG] Friday 26th
- ✓ Neutrino Astronomy ← talk by Carlos Pérez [ST4] Thursday 25th
- ✓ Cosmic Rays ← this talk [APC] Wednesday 24th
- ✓ ... etc ...

✓ Cosmic Microwave Background , Gravitational Waves ...

Lecture outline

- HISTORY

- ACCELERATION AND PROPAGATION
- · THE OBSERVATIONS (SPECTRUM)
- . UHECRS

BRIEF HISTORY OF COSMIC RAY DETECTION

... long time ago back in 1900 ... •

• 1911 CTR Wilson: Development of the cloud chamber & publication of the first pictures

■ 1911 – 1912 VF Hess: balloon flights ← first evidence of CRs

Original Wilson Cloud Chamber (Cavendish Museum)

Victor F. Hess, centre, departing from Vienna about 1911, was awarded the Nobel Prize in Physics in 1936

1911 CTR Wilson: Development of the cloud chamber & publication of the first pictures

- 1911 1912 VF Hess: Calibration measurements with gamma rays
- 1911 VF Hess: First three balloon flights
- 1912 VF Hess: Six balloons flights at altitudes 150 2750 m (eclipse of sun, night, day, afternoon)
- 1912 VF Hess: Seventh balloon flight: 5350 m \leftarrow

discovery of cosmic rays

1911 CTR Wilson: Development of the cloud chamber & publication of the first pictures

- 1911 1912 VF Hess: Calibration measurements with gamma rays
- 1911 VF Hess: First three balloon flights
- 1912 VF Hess: Six balloons flights at altitudes 150 2750 m (eclipse of sun, night, day, afternoon)
- 1912 VF Hess: Seventh balloon flight: 5350 m ← discovery of cosmic rays

A radiation of high penetrating power hits the atmosphere from above, which can't be caused by radioactive emanations.

- 1929 Bothe & Kolhörster: show that tracks are curved by magnetic field → CRs are charged particles
- 1928 Geiger-Müller counters (development).
- 1930 *B Rossi & W Bothe*: **Coincidence technique** many channels → trigger chambers in magnetic fields.
- 1934 Bethe & Heitler: development of electromagnetic cascade theory \rightarrow the observed particles at ground

are secondaries.

■ 1933 – 1935 B Rossi, PMS Blanckett, G Occhialini: Discovery of "secondaries" (only p, n, e[±] known!) with coincidence Geiger-Müller counters.

1934 W Baade & F Zwicky: propose supernovae as possible sources of CRs.

1938 *P. Auger*: Extensive Air Showers ← Geiger–Müller counters in "coincidence technique"

Photo emulsions exposed to CRs

$\pi \rightarrow \mu \rightarrow e$

"star" as a breakthrough of CR interaction with an atom of the emulsion

Results in elementary particle physics with Cosmic Rays

Year	Discovery with cosmic part.	Reference	Detector
1929	Charged secondaries	Skobeltzyn (1929)	Cloud chamber
1929	Charged secondaries	Bothe and Kolhörster (1929)	Counters and absorbers
1932	Charged primaries	Clay and Berlage (1932)	Electroscope
1932	Positron	Anderson (1933)	Cloud chamber
1937	Muon (μ)	Neddermeyer and Anderson (1938)	Cloud chamber
1947	Pion (π)	Perkins (1947)	Photographic emulsion
		Lattes et al. (1947)	Photographic emulsion
1947	Strange particles	Rochester and Butler (1947)	Cloud chamber
1947	μ -absorption and decay	Conversi et al. (1945)	Counters and absorbers
1949	K_L^o -meson	Brown et al. (1949)	Photographic emulsion
1951	Λ^{o} -baryon	Armenteros et al. (1951)	Cloud chamber
1952	<i>E</i> -hyperon	Armenteros et al. (1951)	Cloud chamber
1953	Σ -hyperon	York et al. (1953)	Cloud chamber
1954	K^+, K^- -meson	Menon and O'Ceallaigh (1954)	Photographic emulsion

Remarkable contribution of CRs to particle Physics.

and with first particle accelerator (184 inch synchro-cyclotron at LBL Berkeley)

1948	π^{\pm} -lifetime
1949	π -energy spectrum
1950	π^{\pm} - and μ^{\pm} -mass
1950	π^{o} -meson
1950	π^{o} -mass

Richardson (1948)			
Richman and Wilcox (1950)			
Barkas et al. (1951))			
Bjorklund et al. (1950)			
Panofsky et al. (1950)			

Photogr. emulsion / 184" SC Photogr. emulsion / 184" SC Photogr. emulsion / 184" SC Proportional counter / 184" SC Proportional counter / 184" SC • 1948 *B Rossi (USA) and G Zatsepin (Russia)* started experiments on the structure of Auger showers. These researchers constructed the first arrays of correlated detectors to detect air showers.

• 1947 *Fermi*: proposed acceleration mechanism by bouncing off moving magnetic clouds in the Galaxy.

- 1950's **PMTs & liquid-plastic scintillators** \rightarrow 1st array of liquid scintillators AGASSIZ (1957)
- 1953 Galbraith & Jelley : detection of air-Cherenkov radiation (mirror + PMT + oscilloscope in moonless nights).
- 1958 Porter: 1st large surface array of water-Cherenkov detectors
- 1961 1963 Volcano Ranch (New Mexico) 8.1 km² plastic scintillation
- 1990 2004 Akeno AGASA
- 1981 1993 Fly's Eye I & II (Utah) :
- 1997 2006 HiRes I & II:
- 1964 1977 Havera Park (Leeds, UK)
 12 km² plastic scintillators + water-Cherenkov detectors 100 km² scintillator detectors. Optical fiber. **Fluorescence Detection** \rightarrow stereoscopic observation.
 - **Fluorescence Detection**

- 1996 2010 KASKADE (Germany)
- 2004 2015 Pierre Auger (Argentina) 3000 km² Hybrid (SD + FD)
- 2008 Telescope Array (Utah) :

Surface array

Cosmic Rays ??

"Cosmic Rays can be defined as massive particles striking the Earth"

• **Primary** Cosmic Rays: these entering the upper atmosphere.

 Secondary Cosmic Rays: those produced by the interactions of the primary CRs in the atmosphere or in the Earth.

• Galactic (including solar)

• Extragalactic

Sergio Navas

One of the unsolved problems in Astrophysics is: how to give large energy to produced particles?

Bottom-up models: low energy particles are accelerated via SM processes

within the astrophysical objects (e.g. magnetic/electric fields)

<u>Top-down</u> models: particles already generated with very high energies usually via non-SM processes (e.g. decay of very heavy "exotic" particles)

EXOTIC PARTICLE DECAY

Different daughter particles spectra depending on the number of particles in the final state. In general "bump-like" spectrum, at least before propagation!

Neutrino spectra for different decay channels of a fermionic 1 TeV Dark Matter candidate compared to expected background of atmospheric neutrinos.

Sergio Navas

ACCELERATION

1949: FERMI ACCELERATION (2nd order)

~30 years later a new idea was proposed (it requires heavier calculation) ...

R.Blandford, J.Ostriker, *Astrophys. J.*, **221**, L29 (1978) R.Blandford, D.Eichler, *Phys. Rept.* **154**, 1-75 (1987)

1970's: FERMI ACCELERATION (1st order)

Scattering at magnetic irregularities separated by a planar strong shock waves moving with high velocity β

Ideal fluid equations

□ Conservation of Num. particles & energy:

 $\rho_1 v_1 = \rho_2 v_2$

 \square Strong shock: $\rho_2 \, / \, \rho_1 = (\gamma {+} 1) / (\gamma {-} 1)$

□ Fully ionized plasma (monoatomic ideal gas): $\gamma = 5/3 \sim 1.7$ $v_1 / v_2 = 4$

→ Rapid gain in Energy as particles repeatedly cross shock front

$$\Delta E / E \propto \beta$$
 ($\beta \sim 10^{-1}$)

order

Axford, Krymsky (1977), Bell, Blandford, Ostriker (1978) Achterberg (2001), Bell (2004)

Power law spectrum $E^{-\gamma}$ predicted !

The Fermi acceleration mechanism generates a power-law particle energy spectrum.

- = initial energy of particle at source
- $\zeta = \frac{\Delta E}{E}$ = energy gain after each shock-crossing ($\zeta <<1$)
- \rightarrow Energy after *n* crossings: $E_n = E_0 \cdot (1 + \zeta)^n \implies n = \frac{\ln \mathbb{E}_n / E_0}{\ln(1 + \zeta)}$

 P_{esc} = probability to escape the accelerating region after each shock crossing (constant & <<1) (= ratio of the loss and crossing flux = $4v_2/c$)

 \rightarrow Probability to stay in the acceleration region: $N = N_0 (1 - P_{esc})^n$

$$\frac{dN}{dE} \propto E^{-1 + \frac{\ln \left(-P_{esc} \right)}{\ln(1 + \zeta)}} \approx E^{-1 - \frac{P_{esc}}{\zeta}}$$

$$\frac{P_{esc}}{\zeta} \approx \frac{3}{\frac{v_1}{v_2} - 1} = (\text{strong shock limit}) = 1$$

✓ Predicted exponent independent of local environment / shock parameters.
 ✓ Observed spectrum goes like E^{-2.7} → something still missing …

The observed flux from high energy CRs requires a steeper injection spectrum.

 E_0

SOURCES

Powerful shocks in the Universe? Supernovae !

HESS: 1st Experimental Confirmation!

HESS (γ -ray color map E ~ 1 TeV) **ASCA** (X-ray contour E ~ 1 keV)

High-energy particle acceleration (γ-rays) in the shell of a supernova remnant

Sergio Navas

GALACTIC sources

Several violent processes occur in the Universe that can act as particle's sources:

 SuperNova Remnants (SNR)
 – Fermi Shock Mechanism –

http://www.investigacionyciencia.es/noticias/el-misterio-de-la-nebulosa-del-cangrejo-10020

Neutron stars / Pulsars
 dense & compact objects
 high magnetic fields –
 ~2M_{sun} Ø~20 km

Micro Quasars
 Binary systems with
 an accreting BH –

Sergio Navas

EXTRAGALACTIC sources

Several violent processes occur in the Universe that can act as particle's sources:

Active Galactic Nuclei

 (AGN)
 Quasars / Blazars: supermasive BH at center of Galaxy emitting relativistic jets –

 ${\sim}10^6 {-}~10^9~M_{sun}$ $\,$ Distance ${\sim}240~Mpc {-}6~Gpc$

Core of Galaxy NGC 426I

Hubble Space Telescope Wide Field / Planetary Camera

Ground-Based Optical/Radio Image

HST Image of a Gas and Dust Disk

380 Arc Seconds 88,000 LIGHT-YEARS

Gamma Ray Bursts (GRB)
 – narrow beam of intense
 EM radiation –

17 Arc Seconds 400 LIGHTYEARS AGN (Radio-galaxy M87)

Hubble

5 kly synchrotron radiation jet

Larmor radius & Rigidity

Charged (*eZ*) particle moving with velocity β in Uniform Magnetic Field (*B*)

... in order to accelerate CRs to high energies, the size of the acceleration site must be larger than the Larmor radius.

Larmor radius & Rigidity

ENERGY LIMITATION: the Hillas plot

Hillas Criterion: Geometrical requirement

Larmor Radius < size of accelerator

(otherwise escapes the acceleration site)

$$E_{\text{max}} \approx 10^{18} \text{eV} \cdot \text{Z} \cdot \left(\frac{\text{R}}{\text{kpc}}\right) \cdot \left(\frac{\text{B}}{\mu \text{G}}\right)$$

(no energy losses)

 \rightarrow Large sites (R), large magnetic fields (B)

SN remnants: $E_{max} \sim 10^{15} \text{ eV}$ (knee) CRs : $E_{max} \sim 10^{20} \text{ eV}$ (cutoff) ??

ENERGY LIMITATION (cont.)

Relaxed for heavy nuclei !

1. Hillas Criterion (Geometrical)

PROPAGATION

Propagation of Cosmic Rays

Propagation of CRs from the source to the Earth can change

the energy spectrum

AND

the direction

Deflection in magnetic fields + Energy loss due to synchrotron emission

Scattering with intergalactic/interstellar medium changes energy spectrum

Interstellar space (residence time of CRs in Galaxy ~5×10⁶ years)

... the propagation of CRs resembles a random-walk in real space (*diffusion* \rightarrow *isotropy*) and momentum space (*diffusive acceleration*) explained by scattering of CRs on turbulent magnetic fields in the Galactic disc.

Galactic Cosmic Rays

Galactic CRs at least up to energies around the knee ($\sim 5 \times 10^{15}$ eV)

are deep in the diffusive regime \rightarrow propagation can be described by solving numerically a

diffusion-convection-energy loss equation which is location-energy- and specie- dependent

$$\begin{aligned} \frac{\partial n_i(E, \boldsymbol{x}, t)}{\partial t} &- \nabla (D \nabla n_i(E, \boldsymbol{x}, t)) &= Q(E, \boldsymbol{x}, t) & \leftarrow \text{Diffusion} \\ \text{Inelastic scattering with gas + decays} \to & - \left(c \rho \lambda_{i, \text{inel}}^{-1}(E) + \lambda_d^{-1} \right) n_i(E, \boldsymbol{x}, t) \\ \text{Synchrotron radiation + adiabatic red-shift} \to & - \frac{\partial}{\partial E} \left(\beta_i n_i(E, \boldsymbol{x}, t) \right) \\ \text{producing species } i \text{ from spallation of } j \to & + \sum_k \int_E^\infty dE' \frac{\mathrm{d}\sigma_{ki}(E', E)}{\mathrm{d}E} n_k(E', \boldsymbol{x}, t) \end{aligned}$$

Solved numerically with a given geometry for Galactic Disk and compared to data

Galactic Cosmic Rays

Galactic CR spectrum injected at sources \Leftrightarrow the one observed at Earth

- 1. SNR observed in γ -rays with spectrum $\propto E^{-\alpha}$ with $\alpha \sim 2.2$
- 2. Hadronic contribution to γ -ray emission from primary nuclei interacting with ambient gas
- 3. Acceleration spectrum $\propto E^{-2.2}$ consistent with non-relativistic shock acceleration theory
- 4. Charge CR spectrum observed at Earth n(p) & injected spectrum $\Phi(p) \propto E^{-p}$ related by:

$$n(p) \propto \frac{\Phi(p)}{D(p)} \propto p^{-\alpha-\delta}$$

5. Data from secondary (N) to primary (O) CR ratios $\rightarrow \delta \sim 0.4 - 0.5 \Rightarrow n(p) \propto E^{-2.7}$

Consistent with observations!

OUR LOCAL GROUP

contains more than 30 galaxies

4 MILLION LIGHT YEARS wide

Black Body spectrum Cosmic Microwave Background T ~ 3 K E ~ 10⁻³ eV Cosmic Microwave Background Density ~ 410 cm⁻³ (CMB) Released 380.000 yr after the Big Bang (CMB)

COSMIC MICROWAVE BACKGROUND

- I. Non-relativistic baryons (gas in centers of Galaxy Clusters) \leftarrow NEGLIGIBLE !II. Adiabatic energy loss (expansion of the Universe = redshift) \leftarrow SMALL !
- III. Low energy target photons (γ_{CMB} Cosmic Microwave Background) \leftarrow DOMINANT !

Nucleons & nuclei interactions with low energy photons

 γ_{CMB} Cosmic Microwave Background

Sources with E > E_{GZK} must be at D < 100 Mpc (local cluster)

Deflection in Magnetic Fields

Deflection of cosmic rays in cosmic magnetic fields still hard to quantify $\vec{F} = q \cdot \vec{v} \times \vec{B}$ (based on numerical simulations):

rms deflection angle

Waxman et al. Astrophys. J. 472 L89 (1996)

$$\theta(\mathrm{E},\mathrm{d}) \approx \frac{\sqrt{\mathbf{Q} \ d \ l_c/9}}{r_g} \approx 0.8^{\circ} \cdot \mathrm{Z} \cdot \left(\frac{\mathrm{E}}{10^{20} \mathrm{eV}}\right)^{-1} \cdot \left(\frac{d}{10 \mathrm{Mpc}}\right)^{-1/2} \cdot \left(\frac{l_c}{1 \mathrm{Mpc}}\right)^{-1/2} \cdot \left(\frac{\mathrm{B}}{10^{-9} \mathrm{G}}\right)$$

B = Strength of the magnetic field coherent over a length l_c E = cosmic ray energy traveling a distance d

Order of magnitude estimate (Galaxy):

$$l_c \approx 100 \text{ pc}, \ d \approx 10 \text{ kpc}, \ B \approx 3 \ \mu G \implies \theta(E) \approx 1^0 \cdot Z \cdot \left(\frac{10^{20} \text{ eV}}{E}\right)$$

 $E_{proton} \sim 60 \text{ EeV} \rightarrow \text{few}$ degrees $E_{iron} \sim 60 \text{ EeV} \rightarrow \text{tens of degrees} \Rightarrow$ Galactic magnetic fields are likely to destroy any possible correlation with local large scale structure in case of heavy composition

Large-scale extragalactic magnetic fields are much less known...

DETECTION

Detection of Astroparticles ... a challenge !

The basic ideas are the same as for any particle physics detector. The **"how"** is NOT an issue:

 $(\leftarrow magnetic field)$

(\leftarrow atmosphere!

 $(\leftarrow highly relativistic)$

Charged particles:

- Spectrometers to reconstruct Z/M
- Cherenkov light detectors
- Calorimeters to measure the energy
- ✓ Fluorescence Telescopes

✓ ...

• Neutral particles: turn them into charged ones and measure those...

... the main question is

"which" are the messengers I want to study (CR, γ -rays, ν)?

"which" region of the energy spectrum I want to explore?

Sergio Navas

50

DIRECT DIRECT DETECTION

(BELOW THE KNEE) SATELLITES, STRATOSPHERIC BALLOONS...

Solar Modulations and Abundances of Elements

30

25

Solar System (Lodders)

GCR (ACE/CRIS)

20

10

15

Atomic Number (Z)

DETECTORS IN SPACE

PAMELA Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

(Data 2006 – 2008) e[±] , p , p̄ , He 1 GeV – 1.2 TeV

DETECTORS IN SPACE

57

CRs "below the knee": SUMMARY

- 1. Direct detection measurements: detectors in space, stratospheric balloons...
- 2. Main component of CRs: protons (~85%), with additionally He (~10%) + other heavier elements
- 3. Abundances: *odd–even* effect (*even* = tighter bounded nuclei = more abundant)
- 4. Spallation effect observed: Li-Be-B produced as secondaries
- 5. Low energy CR flux suppressed and modulated by Sun activity
- 6. "Featureless" energy spectrum ∝E^{-2.7}

 $\frac{\mathrm{dN}}{\mathrm{dE}} = \frac{1.8 \times 10^4 \, (\mathrm{E/GeV})^{-2.7}}{\mathrm{m}^2 \cdot \mathrm{s} \cdot \mathrm{sr} \cdot \mathrm{GeV}}$

- 7. p and He (slightly) different spectral index and changing with Rigidity
- 8. Good agreement between experiments over may orders of magnitude in Energy.

INDIRECT DETECTION

(AROUND THE KNEE) GROUND BASED DETECTORS

SUCOND DYSED DELECTOUS

Extensive Air Shower (EAS) first observed in the late 1930s Only *p*, *n*, e^{\pm} were known (μ in 1937, π^{\pm} in 1947, π^{0} in 1950)

At 10¹⁵ eV around 10⁶ particles cover 10⁴ m².
At 10²⁰ eV around 10¹¹ particles cover 10 km².

Array of Surface detectors (water Cherenkov, scintillators, ...)

Extensive Air Showers (EAS)

Atmosphere = calorimeter of variable density (vertical thickness > 26 radiation lengths) (1 proton, E=10¹⁸ eV, θ =0°) \rightarrow ~ 10¹⁰ particles at sea level, few km² on ground

Electromagnetic EAS: the Heitler model

• Splitting process until $E < E_{critical} \sim 80 \text{ MeV}$

EAS initiated by hadrons & superposition model

Extensive Air Showers (EAS)

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Fluorescence Telescopes

Surface Detectors

Shower Longitudinal Profile

Lateral Distribution of Particles at Ground

Scintillators

e/ γ **detector**: liquid scintillator + light collector + PMT **Muon detector**: plastic scintillator shielded (iron) + PMT

Sergio Navas

GROUND BASED DETECTORS:

DATA & INTERPRETATION

Ground Based detectors

Connection from DIRECT to SHOWER measurements

KASKADE & KASKADE-Grande

Area ~ 200×200 m² 252 stations (scintillators) 13 m spaced $E \in 10^{15} - 10^{17} eV$

KASKADE

-Grande

Area ~ 700×700 m² + 37 stations 10 m² scintillators >100 m spaced $E \in 10^{16} - 10^{18} \text{ eV}$
KASKADE & KASKADE-Grande

CRs "around the knee": SUMMARY

- 1. Indirect measurements: ground based detectors (Fluorescence, Cherenkov, Scintillators...)
- 2. A good description of the all-particle spectrum found (compatible between experiments).
- 3. Data consistent with the assumption of a **rigidity** dependent change of the *knee* energy.
- 4. Light (*He* dominated) composition at the knee.
- 5. Change towards a heavy composition at higher energies.
- 6. KASKADE-Grande extends unfolding analysis to E ~ 10¹⁸ eV (3 mass groups) and Indicates

```
very heavy composition at E ~ 10^{17} eV.At the knee~4×10<sup>15</sup> eV spectral slope changes from<br/>\gamma \sim 2.7 to \gamma \sim 3.1 (end of Galactic "proton" flux)At the 2<sup>nd</sup> knee~4×10<sup>17</sup> eV<br/>\gamma \sim 3.1 to \gamma \sim 3.3 (end of Galactic "Fe" flux)
```

INDIRECT DETECTION

(FROM THE ANKLE TO THE CUTOFF)

GIANT GROUND BASED DETECTORS

AIVIAL AVAAIAD DVOED DELEALAVO

The Pierre Auger Observatory

Malargüe – Argentina

Taking data since 2004

(Pampa Amarilla)

- Detector completed in June 2008
- ~500 members and 19 countries

Argentina, Australia, Bolivia^{*}, Brazil, Croatia, Czech Republic, France, Germany, Italy, Mexico, Netherlands, Poland, Portugal, Romania^{*}, Slovenia, Spain, U.K., U.S.A., Vietnam^{*}

HYBRID detection technique

Hybrid shower detection

FLUORESCENCE DETECTORS (FD)

4 fluorescence sites + 1 HEAT

* grouped in units of 6 telescopes * \approx 14% duty cycle * field of view: 30° × 30°

SURFACE DETECTORS (SD)

- * 1600 water Cherenkov tanks in 1.5 km spaced array
- 61 in 750 m grid ("infill")
- * \emptyset 3.6 m × h1.2 m (12 ton purified water)
- * 100% duty cycle

Surface Communication antenna GPS antenna Detector

Electronics enclosure 40 MHz FADC, local triggers, 10 Wat

A CONTRACT OF

Solar panels

Battery —

3 PMTs (9") for Cherenkov light detection Plastic tank with 12 ton of water

Surface Detector array (SD)

Fluorescence Detector (SD)

Spherical segmented mirror

Safety curtain

Camera with 440 photomultipliers

> Aperture with UV filter

Corrector ring

Example of "hybrid" event

Shower Observables

What are they ??

Single line: χ^2 /ndf = 128.1/16 , p=1.15×10⁻¹⁹ Broken line: χ^2 /ndf = 10.3 /14 , p=0.74

Conclusions:

A trend towards a heavier composition at higher energies

Particle Physics !

p-air cross section at $\sqrt{s} = 57 \text{ TeV}$ (<

(<E>≈1.7 EeV)

1200

CRs "end of spectrum": SUMMARY

Where do we stand ?

We observe:

• A suppression in energy spectrum: *GZK-effect* or exhaustion of the

acceleration mechanism?

- **O No GZK photons or neutrinos**
- **O** A trend towards a heavier composition at higher energies
- **O** A weak correlation to nearby matter distribution
- A very isotropic sky on large scale
- O Particle Physics measurements with UHECRs !

Image credit: Stan Lee / Marvel Comics

nanks

90