
Heavy ions — exercises

(Dated: September 20, 2014)

THE BJORKEN MODEL

1) Write t and z expressed in terms of the proper time τ =
√
t2 − z2 and the space-time rapidity

η = 1
2 ln t+z

t−z . Write the expression for the local flow velocity uµ ≡ dxmu/dτ .

2) Given the stress-energy tensor for a perfect fluid Tµν = (ε+ P )uµuν − Pgµν , where ε is the

energy density and P the pressure, write an evolution equation in propert time for ε. Solve the

equation for a typical value of the speed of the sound c2
s = dP/dε. Hint: Use the conservation

equation ∂µT
µν = 0.

3) Using the fundamental thermodynamical relation (at fixed volume), dε = Tds, write and

solve the evolution equation for the entropy density s. Furthermore, using the relations dP = sdT

(at fixed volume) write and solve the evolution equation for the temperature.

Solution

1) The Bjorken model is a 1D solvable hydrodynamical model where all thermodynamical

quantities only depend on the proper time. After straightforward manipulations we find that

t = τ cosh η, z = τ sinh η and the flow velocity is simply uµ =
(

cosh η, 0, 0, sinh η
)

= xµ/τ .

2) Applying the differential operator on the stress-energy tensor and taking advantage of the

chain rule ∂
/
∂xµ = ∂τ

/
∂xµ ∂

/
∂τ , we obtain

∂µT
µν =

∂
(
ε+ P

)
∂τ

uµ
∂τ

∂xµ
uν − gµν ∂P

∂τ

∂τ

∂xµ
(1)

+
(
ε+ P

) [∂uµ
∂xµ

uν + uµ
∂uν

∂xµ

]
. (2)

Working out the details, we obtain

uµ
∂τ

∂xµ
= cosh η

∂τ

∂t
+ sinh η

∂τ

∂z
= 1 (3)

∂uµ

∂xµ
=

1

τ
(4)

uµ
∂uν

∂xµ
= 0 (5)

so that all terms in the equation are proportional to uν . This implies that

∂ε

∂τ
+
ε+ P

τ
= 0 . (6)
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Using that dP
/

dε = P
/
ε = c2

s, the solution is ε(τ) = (τ0

/
τ)1+c2sε(τ0). Recall, that c2

s = 1/3 in a

perfect fluid.

3) Using the definition of the entropy density sT = ε+ P and the relation above, we get that

∂s

∂τ
+
s

τ
= 0 (7)

which is solved by s(τ) =
(
τ0/τ

)
s(τ0). Note that the entropy density in the comoving frame,

sµ = suµ, is conserved, ∂µs
µ = 0! Finally, since

dε

dτ
=

dε

dP

dP

dT

dT

dτ
(8)

we find the evolution equation for the temperature, ∂T
/
∂τ + c2

sT
/
τ = 0, which is solved by

T (τ) =
(
τ0/τ

)c2sT (τ0).

THE EIKONAL APPROXIMATION AND THE PATH-ORDERED WILSON LINE

Definitions: Light-cone coordinates x± ≡ 1√
2
(x0 ± x3), and p · x = p+x− + p−x+ − p · x.

1) Assuming the dominance of the +-momentum, calculate the S-matrix of an on-shell quark

scattering off one color potential Aµ(x) (in the fundamental representation), S1(p′, p). Show that

Aµ(x) = Aµ(x+,x) results in the conservation of +-momentum, 2πδ(p′+ − p+), and discuss why.

Hint: Make use of the fact that 1
2

∑
λ ū

λ(p′)γµuλ(p) = 2pµ in the eikonal approximation.

2) Using the path ordering property,∫
dx1 . . . dxnΘ(x2 − x1) . . .Θ(xn − xn−1)A(x1) . . . A(xn) =

1

n!
P
[∫

dxA(x)

]n
(9)

calculate the S-matrix of 2 and n scatterings in the medium. Resum the S-matrices and identify

the path-ordered Wilson line

U(x) = P exp

[
ig

∫
dx+A−(x+,x)

]
. (10)

Solutions

1) We calcute the scattering of an intial quark with momentum p on a medium potential, ending

up with a momentum p′. Using standard Feynman rules, the S-matrix of one scattering with the

medium becomes

S1(p′, p) =
1

2

∑
λ,λ′

∫
d4k

(2π)4
ūλ
′
(p′) igγµδλ

′,λ(2π)4δ(4)
(
p′ − p− k

)
Aaµ(k)T a uλ(p) , (11)
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where we have averaged over incoming spins and summed over outgoing ones. After simplifying

and Fourier transforming the potential to configuration space and approximating pµAaµ ≈ p+Aa,−,

we get

S1(p′, p) = ig 2p+

∫
d4x ei(p

′−p)·xAa,−(x)T a , (12)

where d4x = dx+dx−d2x. Note that is Aa,−(x) ' Aa,−(x+, 0,x), which physically means that the

medium is strongly boosted along the x− direction, opposite to the direction of the quark, then∫
dx−ei(p

′−p)+x− = 2πδ(p′+ − p+) , (13)

and we conserve the +-momentum along the trajectory. Also, we will work in a approximation

where p− = p2
/

(2p+)→ 0 (which follows from p2 = 2p+p−−p2 = 0) when p+ →∞. Then, finally,

we obtain

S1(p′, p) = 2π δ
(
p′+ − p+

)
2p+

∫
d2xe−i(p

′−p)·x
∫

dx+ igA−(x+,x) , (14)

where we have used the shorthand AaT a = A.

2) Using some of the steps developed above we immediately obtain the S-matrix for two scat-

tering off potentials

S2(p′, p) =
1

2

∑
λ

∫
d4k

(2π)4

∫
d4x1d4x2 e

i(p′−k)·x2+i(k−p)·x1 ūλ(p′) ig /A(x2)

× i/k

k2 + iε
ig /A(x2)uλ(p) , (15)

where /x ≡ γµxµ. Using the conservation and dominance of +-momentum, we can use the Dirac

equation /pu(p) = 0 and the relation
{
γµ, γν

}
= 2gµν , to simplify

ū(p′)γµ/kγνu(p) ' 2pν ū(p′)γµu(p) , (16)

where we have suppressed the spin index. Then

S2(p′, p) = −ig2(2p+)2

∫
d4k

(2π)4

∫
d4x1d4x2

ei(p
′−k)·x2+i(k−p)·x1

2k+k− + iε
A−(x1)A−(x2) . (17)

The integral over the internal momentum k can be performed in the high-energy approximation to

give ∫
dk−

ei(x1−x2)+k−

2k+k− + iε
= −2πi

Θ(x+
2 − x

+
1 )

2p+
(18)∫

dk+ei(x1−x2)−k+
= 2π δ(x−1 − x

−
2 ) (19)∫

d2kei(x1−x2)·k = (2π)2δ(x1 − x2) . (20)
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Then, after performing the remaining simplifications and integrals we get

S2(p′, p) = 2πδ(p′+ − p+) 2p+

∫
d2xe−i(p

′−p)·x 1

2
P
[∫

dx+ igA−(x+,x)

]2

, (21)

where we have used the hint given above. By analogy, Sn(p′, p) is found by repacing the factor

1
/

2 by 1
/
n! and [. . .]2 → [. . .]n. When summing all the amplitudes, the factor in square brackets

simply exponantiates, so that the final, re-summed S-matrix becomes

S(p, p′) =

∞∑
n=0

Sn(p′, p)

= 2πδ(p′+ − p+) 2p+

∫
d2xe−i(p

′−p)·xU(x) , (22)

where we have used the definition for the Wilson line given above.

ENERGY LOSS

1) Assuming that every particle looses a constant amount of energy in the plasma, calculate

the high-p⊥ behavior of the nuclear modification factor

RAA =
dNAA

/
dηdp⊥

Ncoll dNpp

/
dηdp⊥

(23)

when the underlying (pp) spectrum was a) a power-like or b) exponential.

2) How is this behavior modified if interaction in the plasma simply absorb particles. Discuss

both cases.

Solutions

1) The modified spectrum in nucleus-nucleus (AA) collisions can be written as

1

Ncoll

dNAA

dp⊥
=

∣∣∣∣dp′⊥dp⊥

∣∣∣∣ 1

Ncoll

dN

dp′⊥
, (24)

where p′⊥ = p⊥+ δp⊥ means that all particles loose a certain amount δp⊥ of transverse momentum

as they pass through the plasma. In case of a constant shift, δp⊥ = const, the Jacobian of the

transformation is 1. For a power-like spectrum dN
/

dp⊥ = Ap−n⊥ the nuclear modification factor

becomes

RAA =

(
1

1 + δp⊥
/
p⊥

)n
, (25)
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which goes to 1 as p⊥ →∞. In case of an exponential spectrum dN
/

dp⊥ = B exp
(
−p⊥

/
Teff

)
, the

nuclear modification factor is a constant,

RAA = e−δp⊥
/
Teff . (26)

In both cases, if there is no medium interaction, δp⊥ = 0, RAA = 1.

2) If the particles are absorbed in the medium we simply have to rescale the prefactor of the

spectrum, A → A′ < A and B → B′ < B. Both for the power-like and exponential spectra, the

nuclear modification factor is a constant.
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