

HEAVY IONS

Konrad Tywoniuk

Taller de Altas Energias 2014, Sep 14 - 27, Benasque

The strong nuclear interaction

- a theory of strongly interaction quarks & gluons
 - never observed directly
 - indirect measurements in experiments
- non-Abelian: gluons interact amongst themselves

A snapshot of a proton

A conundrum: how can QCD particles be aware of the fact that "physical" (long-distance) particles only interact with integer electric charge?

"fractional charge"

2/3 e: up, charm and top1/3 e: down, strange and bottom

"fuzziness"

QCD is a **quantum field theory** (creation & annihilation of particles)

 $\Delta x \Delta p \gtrsim h$

confinement

the quarks are tightly bound by the gluons inside "colorless" objects, so called hadrons

Millennium Prize Problem #7

Yang–Mills Existence and Mass Gap. Prove that for any compact simple gauge group G, a non-trivial quantum Yang–Mills theory exists on and has a mass gap $\Delta > 0$. Existence includes establishing axiomatic properties at least as strong as those cited in [45, 35].

Asymptotic freedom

- QCD is weakly coupled at small distances strongly coupled at large distances
- can use perturbation theory when there is a large scale in the problem
- unfortunately, in many interesting situations this is not the case...

In heavy-ions you also have to consider medium scales, such as T, geometry (1/L)... multi-scale problem!

String breaking mechanism

- $\sqrt{\sigma}$ = 420 MeV is the so-called string tension
- string breaks due to light quarks!

Changing the dynamics

Lecture I

- thermal properties of QCD
- two paradigms: gas or fluid
- do we measure nucleons or gluons?

Heavy-ion collisions probe the strong interaction in highly dynamical and complex conditions.

Collisions & colliders

p+p

e⁺+e⁻

		V	
Names	Start-up	Energy (√s _{NN})	Colliding system
Alternating Gradient Synchrotron (AGS)	mid 1980's	2-5 GeV	variety of beams
CERN Super Proton Synchrotron (SPS)	Pb since 1994	≤ 17 GeV	variety of beams
BNL Relativistic Heavy-Ion Collider (RHIC)	2000	≤ 200 GeV	p+p, d+Au, Au+Au, Cu+Cu,
CERN Large Hadron Collider (LHC)	2010	2.75 TeV, 4 TeV (?)	p+p, Pb+Pb, p+Pb

Turning on the temperaturn

QCD thermodynamics

A rapid rise of energy density (pressure, entropy etc) is observed ($\mu_B=0$).

Number of pions (d_π=3): $n_{\pi} = d_{\pi} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{e^{E_{\mathbf{p}}/T} - 1}$

Free parton gas:

$$e_{SB} = e_{\text{glue}} + e_{\text{quark}}$$

$$e_{\text{glue}} = d_{\text{glue}} \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} \frac{E_{\mathbf{p}}}{e^{E_{\mathbf{p}}/T} - 1}$$

$$e_{\text{quark}} = d_{\text{quark}} \int \frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}} \frac{E_{\mathbf{p}}}{e^{E_{\mathbf{p}}/T} + 1}$$

 $d_{\text{glue}} = 2 \times 8$

 $d_{\text{quark}} = 2 \times 2 \times 3 \times 3$

spin, color

spin, quark/antiquark, color, flavor

Do not reach Stefan-Boltzman limit — interactions survive!

Debye screening

Strong-coupling approach

Gauge-gravity (AdS/CFT) duality: the strong-coupling limit of the gauge theory (N=4 SYM) is described by a weakly-coupled gravitational system in 4D AdS space.

System becomes "hydro-like" (no quasi-particles) on very short timescales and is characterized by the universal $\eta/s = 1/4\pi$.

K. Tywoniuk (UB)

QCD transport properties

Real-time dynamics \Leftrightarrow thermodynamics

Euclidean space and thermal fields:

$$t \to i\tau$$

$$\beta = 1/(k_B T)$$

$$0 \le \tau \le \beta$$

Schematically:

Spectral function ρ connects to the Euclidean correlator

 $G_E(t) = \int_0^\infty d\omega \,\rho(\omega) \,\frac{\cosh \omega(\beta/2 - t)}{\sinh \omega \beta/2}$

Kubo formula:

 $\eta = \pi \lim_{\omega \to 0} \lim_{\mathbf{k} \to 0} \frac{\rho(\omega, \mathbf{k})}{\omega}$

Transport properties encode the long-wave length, long-time features of the underlying theory. This probes the E-correlator in the infrared sector — hard to control on the lattice!

The shear viscosity

Dissipation

x γ rate $\propto \eta \sim$ (mean free path) × (energy-momentum density)

 $\frac{\eta}{s} \sim \tau_R T \sim \frac{h}{k_B} \frac{\tau_R}{\tau_{\text{quant}}}$ what is the relaxation time?

$$\tau \sim (n\sigma v)^{-1} \sim (T^3\sigma)^{-1}$$

- 1. typical collisions $p \sim m_D \sim gT$ with small deflection $\Delta \theta \sim p/E \sim g$
 - need to wait for a long time so to experience N kicks!

2. rare collisions p~T with large deflection

In both cases:
$$au_{\mathrm{rand}} \sim \frac{1}{g^4 T \ln(1/g)}$$

Measure of "fluidity"

Collision evolution

Statistical model

Grand canonical partition function $\ln Z_i(V, T, \mu_Q, \mu_B, \mu_S) = \pm (2s_i + 1) \frac{V}{2\pi^2} \int_0^\infty dp \, p^2 \ln \left[1 \pm \lambda_i \exp(-\beta \omega_i)\right]$

 $\lambda_i(T, \mu_Q, \mu_B, \mu_S) = \exp\left[\beta(\mu_Q Q_i + \mu_B B_i + \mu_S S_i)\right]$

Charged particle spectrum

臼

Photon spectra

$$E\frac{dN}{d^3p} = C(y) \exp\left(-\frac{m_{\perp}}{T_{\text{eff}}(y)}\right)$$
$$m_{\perp} = \sqrt{p_{\perp}^2 + m^2}$$

- exponential thermal photon spectrum
- inverse slope $T_{eff} = 220 \text{ MeV}$
- T_i from hydrodynamics 300-600 MeV
- photons produced at early times
- sensitive to early-time coupling & evolution

Oct 15, 2012

Deposited energy

- particle density is a measure of energy density
- almost flat distribution in pseudorapidity
- factor of 2 from SPS to RHIC and another from RHIC to LHC

$$\frac{\mathrm{d}E}{\mathrm{d}\eta} \simeq \langle E \rangle \frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta} \times \frac{3}{2} \simeq 6 - 12 \times 0.5 \,\mathrm{GeV} \times \frac{N_{\mathrm{part}}}{12}$$
$$\frac{N_{\mathrm{part}}}{2} \sim 170$$

par

1000

Bjorken energy density estimate

At high energies most the matter is mostly transparent; QGP is formed in the wake.

$$\eta_s = \frac{1}{2}\log\frac{t+z}{t-z} \simeq \frac{1}{2}\log\frac{p+p_z}{p-p_z} = \eta$$

Matter at certain rapidity are created in the same space-time slice.

$$\epsilon_{\rm Bj} \simeq \frac{1}{\pi R^2} \frac{\Delta E}{\Delta z} \simeq \frac{1}{\pi R^2 \tau_0} \frac{\Delta E}{\Delta \eta}$$

• using $\tau_0 = 1$ fm and R=6 fm

$$\epsilon_{\rm Bj} \sim 5 - 10 \, \frac{\rm GeV}{\rm fm^3}$$
$$\rho_{\rm cold} = 0.15 \frac{\rm GeV}{\rm fm^3}$$

Enough energy density to melt the nucleons!

The Glauber model

Probabilistic model of the collision.

Nuclear thickness: $T_A(\mathbf{b}) = \int_{-\infty}^{\infty} dz \rho(z, \mathbf{b})$

Optical approximation:

$$\int d\boldsymbol{s} T_A(\boldsymbol{b}) T_B(\boldsymbol{b} - \boldsymbol{s}) \sigma_{NN}^{\text{inel}} \equiv T_{AB}(\boldsymbol{b}) \sigma_{NN}^{\text{inel}}$$

Probability of n scatterings at impact parameter b:

$$P(n, \boldsymbol{b}) = \binom{AB}{n} \left[1 - T_{AB}(\boldsymbol{b}) \sigma_{NN}^{\text{inel}} \right]^{AB-n} \left[T_{AB}(\boldsymbol{b}) \sigma_{NN}^{\text{inel}} \right]^{n}$$

Sum over probabilities = cross section:

$$= \int d^2 b \left[1 - (1 - T_{AB}(\mathbf{b})\sigma_{NN}^{\text{inel}})^{AB} \right]$$
$$\simeq \int d^2 b \left\{ 1 - \exp\left[-ABT_{AB}(\mathbf{b})\sigma_{NN}^{\text{inel}} \right] \right\}$$

K. Tywoniuk (UB)

 $\sigma_{AB}^{\text{inel}}$

Centrality determination

Number of collisions:

$$N_{\text{coll}}^{AB}(\boldsymbol{b}) = \sum_{n=0}^{A} nP(n, \boldsymbol{b}) = ABT_{AB}(\boldsymbol{b})\sigma_{NN}^{\text{inel}}$$

Number of participants:

$$N_{\text{part}}^{A}(\boldsymbol{b}) = \int d\boldsymbol{s} B T_{B}(\boldsymbol{s}) \sigma_{pA}^{\text{inel}}(\boldsymbol{b} - \boldsymbol{s})$$

=
$$\int d\boldsymbol{s} B T_{B}(\boldsymbol{s}) \exp\left[-AT_{A}(\boldsymbol{b} - \boldsymbol{c} \boldsymbol{e} \boldsymbol{p})\right] \text{ by estimation}$$

- events are (typically) categorized
 - soft :: N_{part}
 - hard :: N_{coll}
- how does energy or entropy scale with $N_{part} \& N_{coll}$ not clear

Initial conditions

Smooth distribution of wounded nucleons (participants)

$$N_{\text{part}}(x, y, b) = T_A(x + b/2, y) \left[1 - \left(1 - \sigma_{\text{inel}}^{NN} T_B(x - b/2, y) \right)^B \right] + T_B(x - b/2, y) \left[1 - \left(1 - \sigma_{\text{inel}}^{NN} T_A(x + b/2, y) \right)^A \right]$$

Binary collisions per area: $N_{\text{coll}}(x, y, b) = \sigma_{\text{inel}}^{NN} T_A(x + b/2, y) T_B(x - b/2, y)$

Inner life of nucleons

- the structure of the hadrons changes with energy
- partonic degrees of freedom starts taking over
- space-time picture changes
- related to the physics of infrared & collinear divergences

Digging out gluons

One scale to rule them all

State-of-the-art: Gluon distribution found from solving the Balitsky-Kovchegov equation with running coupling effects.

Hard scale of the problem ($Q_s \gg \Lambda_{QCD}$), governs particle production:

$$Q_s^2(x) \sim A^{1/3} \, x^{-\lambda}$$

Kinematics:

$$x_{1,2} = \frac{M_{\perp}}{\sqrt{s}} e^{\pm Y}$$

 $x \sim 10^{-2}$ at RHIC ($\sqrt{s} = 200 \text{ GeV}$) $x \sim 4 \times 10^{-4}$ at LHC ($\sqrt{s} = 5.5 \text{ TeV}$)

Evolving the state

- initial color charge & energy density: sensitivity to size of initial-state fluctuations
- provides initial conditions for hydrodynamics
- can pin down the shear viscosity from observables

0

Schenke, Tribedy, Venugopalan 1206.6805. PRL 108 (2012)

-6 -8

y[fm]

Non-central collisions

Azimuthal asymmetries

- degree of final state interactions determine the how effectively spatial asymmetries transform to momentum asymmetries
- limit $\sigma \rightarrow \infty$: hydrodynamical limit

$$v_n = \left\langle \cos\left[n(\phi - \psi_n)\right] \right\rangle$$

reaction plane

P_x

- transport coefficients can be found
- hierarchy of v_n coefficients consistent with almost perfect liquid

$$0.07 \le \eta/s \le 0.43$$

Luzum, Ollitrault et al.

UM 1**2**

 higher harmonics are more sensitive to viscosity and granularity

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the <u>Relativistic Heavy Ion Collider</u> (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In <u>peer-reviewed papers</u> summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a *liquid*.

Further puzzles

Summary: QCD fluid in HIC

- perturbative techniques give fundamental insight
- experimental features point to fluid-like features of the formed plasma — good description of data!
- solutions of AdS/CFT shares many of the same features (thermalization, small viscosity)
- what is the gravity dual of "real" QCD? how can we access the strong-coupling regime of QCD otherwise?