Neutrino Physics II Neutrino Phenomenology

Arcadi Santamaria

IFIC/Univ. València

- Neutrino oscillations phenomenology
 - Solar neutrinos and KamLAND
 - Atmospheric neutrinos and MINOS
 - Results on θ_{13} and global fits
 - (Close) future: measurement of $sign(\Delta m_{31}^2)$ and δ

- Neutrino oscillations phenomenology
 - Solar neutrinos and KamLAND
 - Atmospheric neutrinos and MINOS
 - Results on θ_{13} and global fits
 - (Close) future: measurement of sign(Δm_{31}^2) and δ
- 2) Absolute Mass Scale
 - Cosmological Bounds
 - Beta and double beta decays

- Neutrino oscillations phenomenology
 - Solar neutrinos and KamLAND
 - Atmospheric neutrinos and MINOS
 - Results on θ_{13} and global fits
 - (Close) future: measurement of $sign(\Delta m_{31}^2)$ and δ
- 2 Absolute Mass Scale
 - Cosmological Bounds
 - Beta and double beta decays
- Other neutrino properties
 - Limit on N_{v}
 - Sterile v's, NSI and magnetic moments
 - Supernova neutrinos
 - BAU from Leptogenesis

- Neutrino oscillations phenomenology
 - Solar neutrinos and KamLAND
 - Atmospheric neutrinos and MINOS
 - Results on θ_{13} and global fits
 - (Close) future: measurement of sign(Δm_{31}^2) and δ
- 2 Absolute Mass Scale
 - Cosmological Bounds
 - Beta and double beta decays
- Other neutrino properties
 - Limit on N_{v}
 - Sterile v's, NSI and magnetic moments
 - Supernova neutrinos
 - BAU from Leptogenesis
 - Summary of neutrino properties

- Neutrino oscillations phenomenology
 - Solar neutrinos and KamLAND
 - Atmospheric neutrinos and MINOS
 - Results on θ_{13} and global fits
 - (Close) future: measurement of $sign(\Delta m_{31}^2)$ and δ
- 2 Absolute Mass Scale
 - Cosmological Bounds
 - Beta and double beta decays
- Other neutrino properties
 - Limit on N_{v}
 - Sterile v's, NSI and magnetic moments
 - Supernova neutrinos
 - BAU from Leptogenesis
 - Summary of neutrino properties
 - 5 Conclusions

Neutrino oscillations phenomenology

- Solar neutrinos and KamLAND
- Atmospheric neutrinos and MINOS
- Results on θ_{13} and global fits
- (Close) future: measurement of sign(Δm_{31}^2) and δ
- Absolute Mass Scale
- Other neutrino properties
- Summary of neutrino properties
- 5 Conclusions

Solar neutrino experiments

Experiment	Reaction	Threshold
Homestake	$v_e{}^{37} ext{Cl} ightarrow e{}^{37} ext{Ar}$	<i>E</i> > 0.814 MeV
SAGE, Gallex/GNO	$v_e{}^{71}{ m Ga} ightarrow e{}^{71}{ m Ge}$	<i>E</i> > 0.233 MeV
Super-Kamiokande	$v_{{m e},{m x}}{m e} o v_{{m e},{m x}}{m e}$	<i>E</i> > 5.5 MeV
SNO	ES: $v_{e,x}e \rightarrow v_{e,x}e$ CC: $v_eD \rightarrow ppe$ NC: $v_eD \rightarrow v_epn$	<i>E</i> > 5.5 MeV

Arcadi Santamaria

Neutrino Physics II

Tests with reactor neutrinos: KamLAND

Terrestrial anti-neutrinos from nuclear reactors in Japan with $E \sim 1$ MeV and average $L \sim 180$ Km $(\Delta m_{21}^2 L/(4E) \sim 1)$ $\overline{v}_e \rho \rightarrow e^+ n$, $E_{v_e} = E_{e^+} + m_n - m_p$ Measurement of $P(\overline{v}_e \rightarrow \overline{v}_e)$ as a function of the energy!

Arcadi Santamaria

Neutrino Physics II

Global results

Neutrino Physics II

Atmospheric neutrino: SuperKamiokande

 $\pi^+ \rightarrow \overline{\mu^+ v_\mu} \rightarrow e^+ v_e \overline{v_\mu} v_\mu$. Same with π^- . If v's are not distinguished from $\overline{v}'s$: $2v_\mu$ for each v_e

Arcadi Santamaria

Neutrino Physics II

 $L \sim 10$ Km to 10^4 Km and $E \sim 0.1$ GeV To 10 GeV. Ideal to have oscillations with $\Delta m^2 \sim 10^{-3} \text{ eV}^2$. SuperKamiokande $v_{e_i} + N \rightarrow e_i + N'$ detects e_i by Cherenkov:

- It does not see the charge
- It allows to obtain the direction of v_{ei} its energy and the flavour

Results:

- v_e flux not changed and no dependence in L
- Oscillations $v_{\mu} \rightarrow v_{x}$
- $x \sim \tau$ (no much space for steriles or v decays)

Test in accelerators

SuperK results confirmed by neutrinos produced in accelerators: MINOS, K2K,Opera

Opera:	$ u_\mu ightarrow u_ au$	<i>L</i> = 732 Km	$E \sim 17 \text{ GeV}$
K2K:	$v_\mu ightarrow v_\mu$	$L = 250 \mathrm{km}$	$E \sim$ 1 GeV
MINOS:	$ u_\mu ightarrow u_\mu$	<i>L</i> = 735 km	$E\sim$ 3 GeV

Arcadi Santamaria

Neutrino Physics II

Two solutions: $\Delta m_{31}^2 > 0$ Normal hierarchy (NH) $\Delta m_{31}^2 < 0$ Inverted hierarchy (IH)

Octant ambiguity in θ_{23}

Oscillations $v_{\mu} \rightarrow v_{\tau}$

Neutrino Physics II

Results on θ_{13} and δ

 θ_{13} has been measured since 2012 to be different from zero by using reactor anti-neutrino disappearance (Daya Bay and RENO) as well as accelerator appearance and disappearance (MINOS and T2K) From Global fits some indirect information on δ

Neutrino Physics II

The two mass orderings

$$\Delta m_{21}^2 = 7.6 \times 10^{-5} \,\mathrm{eV}^2 \qquad (2.5\% \qquad \sin^2 \theta_{12} = 0.32 \,(4\%)$$

$$\Delta m_{31}^2 = \begin{cases} 2.48 \times 10^{-3} \,\mathrm{eV}^2 \\ -2.38 \times 10^{-3} \,\mathrm{eV}^2 \end{cases} \qquad (2.5\%) \qquad \frac{\sin^2 \theta_{23} = 0.57 \,(11\%)}{\sin^2 \theta_{13} = 0.021 \,(5\%)}$$

Octant ambiguity in θ_{23} δ still not well determinded from the fits but a hint for $\delta \approx 3\pi/2$

Arcadi Santamaria

Neutrino Physics II

(Close) future: measurement of $\mathrm{sign}(\Delta m^2_{31})$ and δ

Nova $(v_{\mu} \rightarrow v_e \text{ And } \bar{v}_{\mu} \rightarrow \bar{v}_e)$: • sign (Δm_{31}^2) (Earth MSW effects) • δ (v_e vs \bar{v}_e) • Strong dependece on θ_{23}

Also: *v*-Factories (NF), Super Beams (SB), Beta Beams (BB)

 $\begin{array}{l} \mathcal{A}^{\rm CP}_{\alpha\beta} \equiv (\mathcal{P}(\nu_{\alpha} \rightarrow \nu_{\beta}) - \mathcal{P}(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})) / (\mathcal{P}(\nu_{\alpha} \rightarrow \nu_{\beta}) + \mathcal{P}(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})) \\ \text{difficult: depends on } J = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2\sin\delta \text{ and the two} \\ \text{mass differences } \Delta m^2_{21} \text{ and } \Delta m^2_{31} \end{array}$

Neutrino oscillations phenomenology

Absolute Mass Scale

- Cosmological Bounds
- Beta and double beta decays
- Other neutrino properties
- Summary of neutrino properties

5 Conclusions

Cosmic Neutrino Background

v's decouple at $T_f \sim 1 \text{ MeV}$ and present v density is

$$n_{
m v} = rac{3\zeta(3)g_{
m v}}{4\pi^2}T_{
m v}^3 pprox 112\,{
m cm}^{-3}\,, \qquad kT_{
m v} \sim 10^{-4}\,{
m eV}$$

if $m_v \neq 0$, v's contribute to the mass density of the universe

$$\Omega_{v_i} = \frac{n_{v_i} m_{v_i}}{\rho_c} \to \Omega_v h^2 = \frac{\sum_i m_{v_i}}{94 \, \mathrm{eV}}, \xrightarrow{h \sim 0.7, \, \Omega \lesssim 0.3} \sum_i m_{v_i} \lesssim 14 \, \mathrm{eV}$$

Refined using CMB and LSS (depends on hypothesis)

$$\sum_{i} m_{v_i} < 0.2 - 2 \,\mathrm{eV}$$

Arcadi Santamaria

Neutrino Physics II

Beta decay

 β decay of tritium: ${}^{3}H \rightarrow {}^{3}He + e^{-} + \overline{\nu}_{e}$ Very little available energy (order few keV) very sensitive to m_{ν}

$$\begin{aligned} \frac{dN}{dE} &= \sum |U_{ei}|^2 \Gamma(m_{v_i}^2, E) = \langle \Gamma(m_v^2, E) \rangle \approx \Gamma(\langle m_v^2 \rangle, E) \\ m_{v_e}^2 &\equiv \langle m_v^2 \rangle = |U_{ei}|^2 m_{v_i}^2 = (M_v^{\dagger} M_v)_{ee} = c_{13}^2 (m_1^2 c_{12}^2 + m_2^2 s_{12}^2) + m_3^2 s_{13}^2 \end{aligned}$$

Arcadi Santamaria

Neutrino Physics II

Neutrinoless 2β decay

 $2v\beta\beta$ observed with $T_{2v\beta\beta} \sim 10^{20}$ year

 $0\nu\beta\beta$ requires Majorana ν masses (does not conserve LN) Suppressed by m_{ν} but enhanced by phase space

$$\mathscr{A}_{0\nu\beta\beta} \propto G_F^2 \frac{m_{\beta\beta}}{q^2}, \quad q \sim 100 \,\mathrm{MeV}$$

$$m_{\beta\beta} = \left| \sum V_{ei}^2 m_i \right| = \left| \left(V M_{\text{diag}} V^T \right)_{ee} \right| = \left| \left(M_v^{\dagger} \right)_{ee} \right| = \\ = \left| c_{13}^2 (m_1 c_{12}^2 + m_2 s_{12}^2 e^{2i\alpha}) + m_3 s_{13}^2 e^{2i(\beta - \delta)} \right|$$

Arcadi Santamaria

Arcadi Santamaria

Neutrino Physics II

TAE 2014, Benasque, September 19, 2014

14/22

Arcadi Santamaria

Neutrino Physics II

TAE 2014, Benasque, September 19, 2014

14/22

Arcadi Santamaria

Neutrino Physics II

Arcadi Santamaria

Neutrino Physics II

2) Absolute Mass Scale

- Other neutrino properties
 - Limit on N_{v}
 - Sterile v's, NSI and magnetic moments
 - Supernova neutrinos
 - BAU from Leptogenesis

Summary of neutrino properties

5 Conclusions

Limit on N_V

 $N_v = 2.982 \pm 0.008$

• Light (
$$m_v \lesssim 45 \,\mathrm{GeV}$$
)

Any other light particle coupling to the Z will contribute

- A fourth generation with $m_{v_4} < 45 \,\text{GeV}$: $\Delta N_v = 1$ (excluded)
- Triplet majorons (Y = 1): $\Delta N_v = 2$ (excluded)
- Doublet majorons, light sneutrinos: $\Delta N_v = 1/2$ (excluded)

Light esterile (singlet) neutrinos are allowed

Arcadi Santamaria

Sterile v's, NSI and magnetic moments

Sterile neutrinos

LSND and MiniBoone see evidence of transitions $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ with $\Delta m^{2}_{\text{LSND}} > \Delta m^{2}_{\text{ATM}}$ (Also hints from reactor, Gallium anomalies and from cosmology ($N_{s} = 1, 2$))

- Experimental situation not completely clear
- Difficult to adjust everything
- Necessary, at least, a fourth neutrino (sterile given Γ_Z)

Non-standar interactions (NSI)

 $\mathscr{L}_{NSI} = -\varepsilon_{\alpha\beta}^{tC} 2\sqrt{2}G_F 2\left(\bar{v}_{\alpha}\gamma^{\mu}P_L v_{\beta}\right)\left(\bar{f}\gamma^{\mu}P_{L,R}\bar{f}\right)$, affect v cross sections and oscillations. Not very strong limits, typically $\varepsilon_{\alpha_{\beta}} < 0.01 - 10$ depending on the flavours.

Neutrino magnetic moments

Change $ve \rightarrow ve$ cross section ($\mu_v \lesssim 10^{-10} \mu_B$) and contribute to the energy loss of stars because plasmon decay $\gamma_P \rightarrow vv$. From red giant stars

$$\mu_{v} < 3 imes 10^{-12} \mu_{E}$$

Arcadi Santamaria

Neutrino Physics II

 $2m_v < \omega_P \simeq 10 \,\mathrm{KeV}$

Supernova neutrinos

Energy released in a SN explosion $\sim 3 \times 10^{53}$ erg mainly neutrinos (99%) $E_v \sim$ few MeV. $\Delta t \sim 10$ s. The 3 types of neutrinos are emitted. SN1987A observed: $24\bar{v}$ in a 13 s interval.

• Limit on the masses: $m_V < 16 \text{ eV}$

- Restrictions on the neutrino velocities
- Restrictions on non-standard cooling mechanisms
 - Oscillation to steriles $\sin^2 2\theta_s \lesssim 10^{-8}$
 - Magnetic moments of neutrinos

BAU from leptogenesis

We exist!: $\eta_B \equiv (n_{\text{baryons}} - n_{\text{antibaryons}})/n_{\gamma} \sim 6 \times 10^{-10}$. Sakharov: a) $\Delta B \neq 0$, b) out of equilibrium c) $\Delta C \neq 0 \& \Delta(CP) \neq 0$ Possible in the SM but not enough. In seesaw $L \rightarrow B$

$$\varepsilon_{1} = \frac{\Gamma(N_{1} \to \Phi \ell) - \Gamma(N_{1} \to \Phi \bar{\ell})}{\Gamma(N_{1} \to \Phi \ell) + \Gamma(N_{1} \to \Phi \bar{\ell})}$$

Sphalerons conserve B - L but violate B with $\Delta L = \Delta B$

$$\eta_B = 10^{-2} \, arepsilon_1 \, \kappa o M_1 \geq 10^9 \, \mathrm{GeV}$$

Arcadi Santamaria

Neutrino Physics II

- Neutrino oscillations phenomenology
- 2 Absolute Mass Scale
- Other neutrino properties

4 Summary of neutrino properties

5 Conclusions

Summary of parameters

$\Delta m_{31}^2 \sim \pm 2.4 \times 10^{-3} {\rm eV}^2$	$ heta_{23}\sim45^\circ$	Atmos,K2K,MINOS
$\Delta m_{21}^2 \sim 7.6 imes 10^{-5} { m eV}^2$	$ heta_{12}\sim 35^\circ$	Solar, KamLAND
	0.00	T2K,MINOS,Double Chooz
	$\sigma_{13} \sim \sigma_{13}$	Daya Bay,RENO
N_{ν} (active and light)	3	LEP
$m_{etaeta} = \sum_i V_{ei}^2 m_{v_i} $	$\lesssim 0.2 eV$	KamLAND-Zen,EXO,HM,IGEX,
$m_{v_e} = \sum_i V_{ei} ^2 m_{v_i}^2$	< 2.2 eV	Mainz and Troitsk
$\sum_i m_{v_i}$	$\lesssim 1 \mathrm{eV}$	Cosmology
sign(Δm_{31}^2)	?	Nova,NF,BB,SB,
CP, δ	$3\pi/2$?	Nova,NF,BB,SB,
Dirac or Majorana? (α,β)	?	HM?,0 $\nu\beta\beta$
N _s (light sterile)	1,2 ?	LSND,MiniBooNE,Cosmology
μ_{v}/μ_{B}	$< 10^{-10}, 10^{-12}$	σ_v , red giants
NSI	$arepsilon \lesssim 0.01 ext{}10$	Sun,Atm,LSND,NF,
$LFV \; (\mu \to \boldsymbol{e}\gamma, \cdots)$	$< 5.7 imes 10^{-13}$	MEG,COMET/Mu2e,…

Unknowns

- *m*_{lightest} not known (it could be zero)
- Mass ordering ($sign(\Delta m_{31}^2)$) now known
- Is there CP violation (δ) ?
- Is LN conserved in 2β decays? Is it due to Majorana v masses?
- Is there LFV in the charged sector $(\mu \rightarrow e\gamma, \tau \rightarrow \mu\gamma, \mu e \text{ conversion}, \cdots)$
- Are there sterile v's, NSI or magnetic moments?
- Why v masses are so small?
- Why the structure of masses and mixings is so different from the quark sector?

1) Neutrino oscillations phenomenology

- 2 Absolute Mass Scale
- Other neutrino properties
- Summary of neutrino properties

6 Conclusions

Conclusions

 We have learned a lot on the neutrino properties in the last years but there is still a lot to be learned

Conclusions

- We have learned a lot on the neutrino properties in the last years but there is still a lot to be learned
- We do not have a "Standard Model" of neutrino masses but have many interesting ideas

Conclusions

- We have learned a lot on the neutrino properties in the last years but there is still a lot to be learned
- We do not have a "Standard Model" of neutrino masses but have many interesting ideas
- Fortunatelly, we have many proposed experiments which can refine our knowledge on the neutrino properties and guide us in our way to a "Standard Model of Neutrino Masses"

Thank you

Thanks for your attention It has been a pleasure!

Arcadi Santamaria

Neutrino Physics II