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1 Massive spin-1 field

1.1 Exercise 1: Equations of motion

Given the Lagrangian

L = −1

4
FµνF

µν +
m2

2
AµA

µ, Fµν = ∂µAν − ∂νAµ, (1)

and remembering the equations of motion

∂µ
∂L

∂ (∂µAν)
− ∂L

∂Aν

= 0, (2)

show that

[
gµν

(
�+m2

)
− ∂µ∂ν

]
Aν = 0, (3)

∂µA
µ = 0. (4)

1.1.1 Solution

In order to solve this problem correctly, one needs to remember the rules of the
tensor derivative

∂xα

∂xβ
= δαβ . (5)

With this, we write the equations of motion (2) for the Lagrangian (1) to get
an identity. We evaluate (2) piece by piece:

∂L
∂Aν

=
∂
(

m2

2
AµA

µ
)

∂Aν

=
∂
(

m2

2
Aµg

µρAρ

)

∂Aν

=

m2

2

[
δνµg

µρAρ +Aµg
µρδνρ

]
= m2Aν ,

and from here one discovers that the tensor derivative rule is quite analogue to
the normal derivative rule, although one should always proceed with care. For
the other term in (2)
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∂µ
∂L

∂ (∂µAν)
= −1

4
∂µ

∂ [(∂σAρ − ∂ρAσ) (∂
σAρ − ∂ρAσ)]

∂ (∂µAν)
=

−1

4
∂µ

[(

gσαgρβ

(

δµαδ
ν
β − δµβδ

ν
α

)

+ δµσδ
ν
ρ − δµρ δ

ν
σ

)

(∂σAρ − ∂ρAσ)
]

=

−∂µ [∂
µAν − ∂νAµ]

So the final equations of motion are

∂µ∂
µAν − ∂µ∂

νAµ +m2Aν = 0. (6)

Equation (6) will help us prove the two relations defined in (3) and (4). Let’s
start with the first one

[
gµν

(
�+m2

)
− ∂µ∂ν

]
Aν = �Aµ +m2Aµ − ∂µ∂νAν

Substituting m2Aµ by the difference of derivatives, as (6) indicates,

�Aµ − ∂ν∂
νAµ + ∂ν∂

µAν − ∂µ∂νAν = 0,

for by definition, the Lambertian is

�Aµ = ∂ρ∂
ρAµ.

The relation (4) is also easy to obtain. We just take a derivative in the first
one

∂µ
[
gµν

(
�+m2

)
− ∂µ∂ν

]
Aν = ∂µ∂ρ∂

ρAµ +m2∂µA
µ − ∂µ∂

µ∂νAν = m2∂µA
µ

but we know that this expression is equal to zero due to (3), so its derivative
will also be zero. Therefore

m2∂µA
µ = 0,

and we have proved (4), provided that m 6= 0.

1.2 Exercise 2: Plane wave solutions

A plane-wave solution has the form

Aν = ǫνe±ipx (7)

Taking into account the Lagrangian of the last exercise,

1. What are the conditions on the polarization vector?

2. Given pµ = (E, 0, 0, p) with p = |~p|, construct a 3-orthogonal ǫν with
ǫ2 = −1

3. Show that ǫν3 = ǫνL ∼ pν

m
for p >> m
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1.2.1 Solution

The conditions on the polarization vector can be obtained from (4). Since we
derived all the relations from the equations of motion, one doesn’t expect to get
new information from the other relations. Substituting (7) in (4)

∂µA
µ = ±pµǫ

µe±ipx = 0 =⇒ pµǫ
µ = 0, (8)

thus the polarization vector ǫµ and the momentum pµ must be orthogonal.
This doesn’t mean in principle that only transversal polarizations are allowed,
because the p0 component will always be non-zero.

The construction of an orthogonal polarization vector should be straightfor-
ward. The components of ǫ verify two constrains

ǫ0E − ǫ3p = 0, (9)

(ǫ0)
2 − (ǫ1)

2 − (ǫ2)
2 − (ǫ3)

2
= −1. (10)

From the first we get

ǫ0 = ǫ3
p

E
. (11)

We can introduce an angle θ representing how longitudinal our polarization
vector is, so we split the norm in (10) in two:

(ǫ3)
2 − (ǫ0)

2
= cos2 θ,

(ǫ1)
2
+ (ǫ2)

2
= sin2 θ.

For the first case we get

(ǫ3)
2

(

1− p2

E2

)

= cos2 θ =⇒ ǫ3 =
cos θ

√

1− p2

E2

.

And for the second we need another angle φ,

ǫ1 = cosφ sin θ, ǫ2 = sinφ sin θ,

So our most general polarization vector verifying all the constraints is

ǫµ =




p

E

cos θ
√

1− p2

E2

, cosφ sin θ, sinφ sin θ,
cos θ

√

1− p2

E2



 . (12)

If we add as a constraint that our polarization vector must be longitudinal
(3-orthogonal vector), then θ = 0 and

ǫµ =





p
E

√

1− p2

E2

, 0, 0,
1

√

1− p2

E2



 . (13)

If the momentum is much larger than the mass in (13), we can operate with
the third component of the polarization
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ǫ3 =
1

√

1− p2

E2

=
1

√
E2−p2

E2

=
E

m
=

p0
m

,

ǫ0 =
p

E
ǫ3 =

p

m
,

where we have used (11). If we compare now ǫµ and pµ, we will realize that

ǫµ =
pµ

m
. (14)

1.3 Exercise 3: Propagator

Verify that

Dρν (k) =

[

−gρν +
kνkρ
m2

]
1

k2 −m2 + iǫ
, (15)

is the solution of the Green equation

[(
−k2 +m2

)
gµρ + kµkρ

]
Dρν (k) = gµν , (16)

1.3.1 Solution

We try simple substitution of (15) in (16) and check whether (16) is fulfilled:

[(
−k2 +m2

)
gµρ + kµkρ

]
[

−gρν +
kνkρ
m2

]
1

k2 −m2 + iǫ
=

[
(
k2 −m2

)
(

gµν − kµkν
m2

)

− kµkν +
k2kµkν
m2

]
1

k2 −m2 + iǫ
=

[
(
k2 −m2

)
(

gµν − kµkν
m2

)

− kµkν
m2

(
m2 − k2

)
]

1

k2 −m2 + iǫ
=

[

gµν − kµkν
m2

+
kµkν
m2

]

= gµν

2 Scalar QED

2.1 Exercise 1: Lagrangian

Construct a Lagrangian L for scalar QED, with a scalar field φ (x) 6= φ⋆ (x) and
a photon field Aµ (x)

2.1.1 Solution

The first thing we might try is to adapt the Lagrangian of a free scalar field to
QED by the principle of minimum substitution. The free scalar Lagrangian is

LR
Free = ∂µφ∂µφ−m2φ2. (17)
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But in order to introduce QED we need the Lagrangian to be invariant under
U(1) transformations. Obviously a real field is not enough, and we need to make
our field complex

LFree = (∂µφ)
⋆
∂µφ−m2 |φ|2 . (18)

Now we can use the principle of minimum substitution

∂µ → Dµ = ∂µ − ieAµ,

so the Lagrangian becomes

L = (∂µφ⋆ + ieAµφ⋆) (∂µφ− ieAµφ)−m2 |φ|2 . (19)

The new field Aµ becomes dynamic with the addition of the Yang-Mills kinetic
term, and the final Lagrangian for scalar QED becomes

L = −1

4
FµνFµν + (∂µφ⋆ + ieAµφ⋆) (∂µφ− ieAµφ)−m2 |φ|2 . (20)

2.2 Exercise 2: Interaction

Identify the interaction terms and derive the Feynman rules.

2.2.1 Solution

First we expand the kinetic term of the scalar field in (20)

L = −1

4
FµνFµν + ∂µφ⋆∂µφ+ ieAµφ⋆∂µφ− ieAµφ∂

µφ⋆ + e2A2
µ |φ|2 −m2 |φ|2 .

(21)
Here we can easily identify a current

Jµ = i
(
φ⋆∂µφ− φ∂⋆

µ φ
)
, (22)

that is nothing else than the Nöther current associated to charge conservation.
One can obtain the expression in (22) by applying the Nöther theorem to the
Lagrangian for global U(1) transformations. The current couples to the electro-
magnetic field as eAµ J

µ, so we can write

L = −1

4
FµνFµν

︸ ︷︷ ︸

Free gauge field

+ ∂µφ⋆∂µφ−m2 |φ|2
︸ ︷︷ ︸

Free massive scalar field

+ ieAµ (φ⋆∂µφ− φ∂µφ
⋆) + e2A2

µ |φ|2
︸ ︷︷ ︸

Interaction term

.

(23)
Therefore we have two kinds of vertex coming from the interaction Lagrangian:
a four vertex with two scalar field lines and two photons, and the photon ab-
sorption/emission and and pair annihilation/creation vertices.

5



The first kind of vertex can be represented as

φ

φ⋆

pµ2

pµ1

pµ4

pµ3

φ φ

pµ2

pµ1

pµ4

pµ3

φ⋆

φ

pµ2

pµ1

pµ4

pµ3

φ⋆φ⋆

pµ2

pµ1

pµ4

pµ3

which is a four boson interaction without a counterpart in standard QED in-
volving two photon interaction and also scalar-photon scattering. The weight
associated with this vertex is 2ie2gµνδ (p

µ
1 + pµ2 − pµ3 − pµ4 ), with the momenta

p1,2 coming from the left and p3,4 from the right. The dirac-δ ensures momentum
conservation, and the 2-factor comes from the symmetry in the electromagnetic
field (since it appears squared, we have two different orderings for the photons
involved in the vertex).

The second kind of vertex can be understood either as pair creation/annihilation

φ

φ⋆

pµ1

pµ2

pµ3

φ⋆

φ
pµ2

pµ3

pµ1

−ie (pµ1 − pµ2 ) δ (p
µ
1 + pµ2 − pµ3 ) −ie (pµ2 − pµ3 ) δ (p

µ
1 − pµ2 − pµ3 )

or as photon absorption/emission by a scalar electron

φ

φ

pµ1

pµ3

pµ2

φ⋆

φ⋆

pµ1

pµ3

pµ2

−ie (pµ1 + pµ3 ) δ (p
µ
1 + pµ2 − pµ3 ) ie (pµ1 + pµ3 ) δ (p

µ
1 + pµ2 − pµ3 )

φ
φpµ1

pµ3

pµ2

φ⋆

φ⋆

pµ1

pµ3

pµ2

−ie (pµ1 + pµ3 ) δ (p
µ
1 − pµ2 − pµ3 ) ie (pµ1 + pµ3 ) δ (p

µ
1 − pµ2 − pµ3 )

whose weights are written below each diagram. As you can immediately check,
there are momentum factors appearing everywhere, due to the derivative that
appears in the conserved current (22).

Finally, we need a rule for the internal scalar and photon lines, which will
be given by the propagators. In the case of the photon, we already calculated
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it, and it is given by eq.(15) in the special case when m = 0. For the scalar field
we are going to get exactly the same equation: being a spin-0 field, it behaves
like a boson and follows the Klein-Gordon equation

(
�+m2

)
φ = 0, (24)

which is very similar to what we used for Aµ in (3). The difference between
(3) and (24) arise because the photon is a spin-1 field, whereas our scalar has
spin-0, so the solution for the propagator simplifies as

D (k) =
1

k2 −m2 + iǫ
, (25)

with the following Green equation

(
k2 −m2

)
D (k) = 1, (26)

which is now trivial to solve. Therefore, the rules for the internal lines are

p p

i
p2−m2+iǫ

− igµν

p2+iǫ

where the i appears when we exponentiate the action.
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3 Electroweak physics

3.1 Exercise 2: Z−boson decay width for Z −→ ff̄

Calculate the partial decay width of a Z boson into a pair fermion-antifermion
of mass mf . The fermion mass can be neglected in the calculation.

Z
f̄

f

pµ1

pµ2

pµ3
Z −→ ff̄

3.1.1 Solution

The vertex in this decay carries a weight ieγµ(vf − afγ5), where

vf =− sW
cW

Q+
T 3
I

2cW sW
, (27)

af =
T 3
I

2cW sW
. (28)

It has such a complicated form because the Z boson couples in a different way to
left- and right-handed fermions. For left-handed fermions the coupling strength
is given by e

cW sW

(
T 3
I −Qs2W

)
, whereas the right-handed fermions don’t have

isospin and only couple to the electric charge esW
cW

Q. The way we wrote the
weight of the vertex ensures that left- and right- handed fermions are correctly
accounted for, due to the γ5 that introduces a different sign according to the
chirality of the fermionic field. In the end the amplitude of the diagram is

Mif = ieūr1γµ(vf − afγ5)ǫ
µvr2, (29)

being r1 and r2 the helicity of the fermions and ǫµ the polarization of the
Z boson. The probability (and thence the decay width) is associated to the
modulus squared of the amplitude, and since we don’t care about the helicity of
the final state, we must sum over helicities. On the other hand, we must average
over the polarization of the Z boson. Being this a spin-1 boson, averaging leads
to a global factor 1

3
. First we write explicitly the vertex

1

3

∑

r1,r2

|Mif |2 =

e2

3
Tr
{
ūγµ (vf − afγ5) vǫ

µ (ǫν)
⋆
v̄γ0 (vf − afγ5) γ

†
νγ0u

}
,

where the second part is just the hermitian conjugated of the vertex. We can
solve the product of polarizations by remembering that

ǫµλ (ǫ
ν
λ)

⋆
= −gµν +

pµ1p
ν
1

M2
Z

. (30)
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We substitute and start to move γs around. Also the polarization product
doesn’t directly affect to the v̄, so we can commute both terms, and since the
trace is cyclic, we can also brin together the uū terms

=
e2

3
Tr

{

uū (vf + afγ5) γµvv̄

(

−gµν +
pµ1p

ν
1

M2
Z

)

γ0γ
†
νγ0 (vf − afγ5)

}

=
e2

3
Tr

{

uū (vf + afγ5) γµvv̄

(

−gµν +
pµ1p

ν
1

M2
Z

)

γν (vf − afγ5)

}

.

Note that we applied γ0 (γµ)
†
γ0 = γµ. Now we can use the completion rules for

ff̄

∑

r

urūr = γµp
µ +m, (31)

∑

r

vrv̄r = γµp
µ −m. (32)

(33)

The result is

=
e2

3
Tr

{

(γρp
ρ
2 +mf ) (vf + afγ5) γµ (γσp

σ
3 −mf )

(

−gµν +
pµ1p

ν
1

M2
Z

)

γν (vf − afγ5)

}

.

At this point we are suggested to neglect fermionic masses. I’ll keep them
because they don’t bother too much. Commuting the γ5 along we can bring
together the term vf ± afγ5, and solve it in the trace

=
e2

3
Tr

{

(γρp
ρ
2 +mf ) γµ (γσp

σ
3 −mf )

(

−gµν +
pµ1p

ν
1

M2
Z

)

γν (vf − afγ5)
2

}

=
e2

3
Tr

{

(γρp
ρ
2 +mf ) γµ (γσp

σ
3 −mf )

(

−gµν +
pµ1p

ν
1

M2
Z

)

γν
(
v2f + a2f − 2vfafγ5

)
}

=
e2

3

(
v2f + a2f

)
(

−gµν +
pµ1p

ν
1

M2
Z

)

Tr {(γρpρ2 +mf ) γµ (γσp
σ
3 −mf ) γν} ,

where we have removed the terms proportional to γ5 because they were bound
to disappear when taking the trace: these terms result in a pure imaginary trace
proportional to the fully antisymmetric tensor ǫµνσρ, but we can’t obtain a pure
imaginary number from a modulus. Fortunately, these terms disappear once we
contract the indices of the antisymmetric tensor with another symmetric tensor,
like gµν . The remaining terms of the trace can be easily evaluated, as long as
we remember

Tr {γµpµ1γνpν2} = p1 · p2, (34)

Tr {γµγν} = 4gµν , (35)

Tr {γργµγσγν} = 4 (gρµgσν − gρσgµν + gρνgσµ) , (36)
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and with this

=
4e2

3

(
v2f + a2f

)
(

−gµν +
pµ1p

ν
1

M2
Z

)[

(p2)µ (p3)ν + (p2)ν (p3)µ − gµν (p2 · p3)− gµνm
2
f

]

=
4e2

3

(
v2f + a2f

)
[(

−2 + 4− p21
M2

Z

)

(p2 · p3) + 2
(p1 · p3) (p2 · p3)

M2
Z

+ 3m2
f

]

=
4e2

3

(
v2f + a2f

)
[

(p2 · p3) + 2
(p1 · p3) (p2 · p3)

M2
Z

+ 3m2
f

]

In the CMS frame the Z boson is at rest, and we can solve the scalar product
of momenta very easily

pµ1 =(MZ ,~0), (37)

pµ2 =(E, ~p), (38)

pµ3 =(E,−~p), (39)

so the products
p1 · p1 = M2

Z

p1 · p2,3 = M2
Z/2

p2 · p3 = E2 + p2 = 2p2 +m2
f

and since MZ = 2E in our frame,

p2 =
M2

Z

4
−m2

f =
M2

Z

4

(

1−
4m2

f

M2
Z

)

.

At this point we can really neglect the fermion masses, for we expectmf << MZ

and

1−
4m2

f

M2
Z

≈ 1

Replacing the dot products,

=
4e2

3

(
v2f + a2f

)
[

(p2 · p3) + 2
(p1 · p3) (p2 · p3)

M2
Z

]

=
4e2M2

Z

3

(
v2f + a2f

)
.

Thence the final result for the amplitude is

1

3

∑

r1,r2

|Mif |2 =
e2M2

Z

3c2W s2W

[(
T 3
I − 2Qs2W

)2
+
(
T 3
I

)2
]

. (40)

In this expression we have expanded the vf and the af operators. Now we can
add the phase space factors, neglecting again fermion masses,

dΓ
(
Z → ff̄

)

dΩ
=

Nc

64π2MZ

√

1−
4m2

f

M2
Z

|M|2 ≈ Nc

64π2MZ

|M|2

10



where we took into account the number of colors for quarks. Substituting the
amplitudes

dΓ
(
Z → ff̄

)

dΩ
=

Nc

64π2MZ

[

1

3

∑

r1,r2

|Mif |2
]

=

Nc

e2MZ

192π2c2W s2W

[(
T 3
I − 2Qs2W

)2
+
(
T 3
I

)2
]

. (41)

To get the whole decay width we must integrate the solid angle

Γ
(
Z → ff̄

)
= Nc

e2MZ

48πc2W s2W

[(
T 3
I − 2Qs2W

)2
+
(
T 3
I

)2
]

, (42)

where Nc = 3 for quarks and Nc = 1 for the rest of the fermions.
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4 Higgs physics

4.1 Exercise 1: Decay width for H −→ ff̄

Calculate the partial decay width of a Higgs boson into a pair fermion-antifermion
of mass mf

H
f̄

f

pµ1

pµ2

pµ3
H −→ ff̄

4.1.1 Solution

The strength of the vertex for the Higgs interaction (according to the Yukawa
couplings arising in the Lagrangian) is

mf

v
, therefore the amplitude of the dia-

gram will be

Mif =
mf

v
ūr1vr2, (43)

where r1 and r2 refer to the helicity. The square of the amplitude is the mag-
nitude we are interested in

∑

r1,r2

|Mif |2 =
m2

f

v2
Tr {(γµpµ2 +mf ) (γµp

µ
3 −mf )} =

4m2
f

v2
(
p2 · p3 −m2

f

)
, (44)

where we have used eq. (31), (32) and (34). Like in the Z decay, in the CMS
frame we have

pµ1 =(MH ,~0), (45)

pµ2 =(E, ~p), (46)

pµ3 =(E,−~p), (47)

therefore p2 · p3 = E2 + p2 = 2p2 +m2
f and since MH = 2E in our frame,

p2 =
M2

H

4
−m2

f =
M2

H

4

(

1−
4m2

f

M2
H

)

.

Substituting in (44) one arrives to the final expression

∑

r1,r2

|Mif |2 =
2m2

f

v2
M2

H

(

1−
4m2

f

M2
H

)

. (48)

For quarks one should take into account the number of colors, so we can add
the Nc factor in (48)

dΓ
(
H → ff̄

)

dΩ
=

Nc

64π2MH

√

1−
4m2

f

M2
H

[
∑

r1,r2

|Mif |
]

=
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Nc

m2
f

32π2v2
MH

(

1−
4m2

f

M2
H

) 3

2

. (49)

There is no angular dependence, so we can just integrate the solid angle

Γ
(
H → ff̄

)
= Nc

m2
f

8πv2
MH

(

1−
4m2

f

M2
H

) 3

2

, (50)

where Nc = 3 for quarks and Nc = 1 for the rest of the fermions. We can remove
v2 by remembering

GF =

√
2g22

8M2
W

, v =
2MW

g2
=⇒ 1

v2
=

√
2GF

so we get

Γ
(
H → ff̄

)
= Nc

GFm
2
f

4π
√
2
MH

(

1−
4m2

f

M2
H

) 3

2

, (51)

4.1.2 Evaluation for particular cases

Let’s evaluate the former branching ratio for f = b, τ, µ. We just need to
substitute in (51) for the corresponding mass and take into account the number
of colors. The three cases are shown in the following table

Nc mf (GeV) Γ
(
H → ff̄

)
MeV

µ 1 0.1056 9.15× 10−4

τ 1 1.777 0.259
b 3 4.5 4.94

As it can be seen in the table, the Γ
(
H → bb̄

)
is the most important channel

by far. The decay to τ−τ+ has also a non-negligible contribution, whereas the
Γ (H → µ−µ+) is so low that most likely we won’t observe this process.

4.2 Exercise 2: Finding the Landau pole

The Renormalization Group Equation (RGE) for the running of the Higgs self-
coupling at 1-loop order is given by

β (λ) = Q2 dλ

dQ2
=

3

4π2
λ2 (52)

Find λ
(
Q2
)
using the boundary condition

λ
(
v2
)
=

M2
H

2v2
(53)

What is the scale Q = Λc at which λ
(
Q2
)
diverges for MH = 125 GeV?
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4.2.1 Solution

We solve the RGE equation to obtain λ as a function of Q2

4π2

3

dλ

λ2
=

dQ2

Q2
,

−4π2

3

(
1

λ
− 1

λ0

)

= ln
Q2

Q2
0

,

and now we impose the boundary conditions in order to find λ0 and Q0

Q0 = v, λ0 =
M2

H

2v2
=⇒ −4π2

3

(
1

λ
− 2v2

M2
H

)

= ln
Q2

v2
,

1

λ
= − 3

4π2
ln

Q2

v2
+

2v2

M2
H

λ
(
Q2
)
=

1
2v2

M2

H

− 3
4π2 ln

Q2

v2

. (54)

In order to have a pole the condition is

2v2

M2
H

− 3

4π2
ln

Q2

v2
= 0,

therefore

Q = ve
4π2v2

3M2

H .

The vacuum expectation value of the Higgs is not a free parameter, and can be
related to the mass of the W± boson. Its measured value is v = 246GeV. For
a Higgs mass MH = 125 GeV we get Q ≈ 3.3 × 1024 GeV, further than the
Planck scale ΛG ≈ 1.22× 1019 GeV.
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