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1 Gauge transformation for QED

In continuum QED, a gauge transformation has the following effect on the fields

Aµ(x) → Aµ(x)− ∂µα(x), (1)

ψ(x) → e−igα(x)ψ(x), (2)

ψ̄(x) → ψ̄(x)eigα(x), (3)

and as we can readily check, the lagrangian remains invariant

ψ̄(x) (∂µ − igAµ(x))ψ(x)→ ψ̄(x)eigα(x) (∂µ − igAµ(x) + ig∂µα(x)) e−igα(x)ψ(x) =

ψ̄(x)eigα(x)
(
∂µ

(
e−igα(x)ψ(x)

)
− e−igα(x)igAµ(x)ψ + e−igα(x)∂µα(x)ψ(x)

)
=

ψ̄(x)eigα(x)
(
e−igα(x)∂µψ(x)− ig∂µα(x)ψ(x)− e−igα(x)iAµ(x)ψ(x) + e−igα(x)∂µα(x)ψ(x)

)
=

ψ̄(x) (∂µ − igAµ(x))ψ(x).

On the lattice, if we call the gauge transformation G(x), the variables trans-
form as

Uµ(x) → G(x)Uµ(x)G†(x+ aµ), (4)

ψ(x) → G(x)ψ(x), (5)

ψ̄(x) → ψ̄(x)G†(x). (6)

The gauge transformation for U(1) is the same as in the continuum, G(x) =
e−igα(x), where α(x) takes values on the points of the lattice. Therefore, the
transformation applied to the spinor fields trivially give the same result as in
the continuum. The question is, what happens to the gauge field Aµ(x)?

So we apply the gauge transformation to the link

Uµ (x) = e−igaAµ(x), (7)

and calculate the way the gauge field transform:
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G(x)Uµ(x)G†(x+ aµ) = e−igα(x)e−igaAµ(x)eigα(x+aµ) = e−iga(Aµ(x)−a∂µα(x)),
(8)

where we have used the expression of the discrete derivative

∂µα (x) =
α (x+ aµ)− α (x)

a
. (9)

2 Recovering the continuum gauge action from
the lattice

2.1 Abelian case: QED

The link connecting the points x and x+ aµ is given by

Uµ (x) = e−igaAµ(x). (10)

And the corresponding plaquette is given by the smallest closed product of links,
that is

Pµν = Uµ (x)Uν (x+ aµ)U†µ (x+ aν)U†ν (x) . (11)

Since our group is abelian (more exactly, U(1) for QED), we can solve directly
the product of links by substituting every plaquette in (12) by (11),

Pµν = e−iga[Aµ(x)+Aν(x+aµ)−Aµ(x+aν)−Aν(x)]. (12)

Now we recall the definition of the discrete derivative on the lattice,

∂µAν (x) =
Aν (x+ aµ)−Aν (x)

a
, (13)

and we identify potential derivatives on the Aµ (x) field of equation (13),

Pµν = exp

−iga
Aν (x+ aµ)−Aν (x)︸ ︷︷ ︸

a∂µAν(x)

−

Aµ (x+ aν)−Aµ (x)︸ ︷︷ ︸
a∂νAµ(x)



 . (14)

If we just substitute the differences by the derivative, the expression we get is

Pµν = e−iga[a∂µAν(x)−a∂νAµ(x)] = e−iga
2Fµν(x), (15)

where Fµν is the field strength tensor

Fµν (x) = ∂µAν (x)− ∂νAµ (x) . (16)

With this calculation we can try to recover the continuum gauge action from
the Wilson gauge action on the lattice. The Wilson gauge action is

SG =
2

g2

∑
x,µ,ν

(1− RePµν(x)) . (17)
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Substitute the plaquette for the expression we got in (16),

SG =
2

g2

∑
x,µ,ν

[
1− Re

(
e−iga

2Fµν(x)
)]
, (18)

and finally expand the exponential

SG =
2

g2

∑
x

[
1− Re

(
1− iga2Fµν (x)− g2a4 [Fµν (x)]

2
+O(a6)

)]
=

2

g2

∑
x

[
g2a4Fµν (x)Fµν (x) +O(a6)

]
.

We can observe that the discrete sum becomes an integral as a→ 0

a4
∑
x

=

∫
V

d4x, (19)

giving rise to the following result

SG =

∫
V

d4x
[
Fµν (x)Fµν (x) +O(a2)

]
. (20)

and we recover (up to lattice artifacts) the continuum lattice action.

2.2 Non-abelian case: QCD

For the non-abelian case we can’t solve the plaquette product in (12) we did
before, and we have several alternatives. For instace, one can try to use the
Baker-Campbell-Haussdorf formula

eXeY = eX+Y+ 1
2 [X,Y ]+... (21)

to get an analogue expression as in (13). After some algebra, one arrives to the
following result

Pµν = exp{−iga2 [∂µAν (x)− ∂νAµ (x)]− 1

2
g2a2 ([Aµ (x) , Aν (x+ aµ)]

+[Aµ (x+ aν) , Aν (x)]− [Aµ (x) , Aµ (x+ aν)]− [Aµ (x) , Aν (x)]

−[Aν (x+ aµ) , Aµ (x+ aν)]− [Aν (x+ aµ) , Aν (x)])}.

Here we are ommiting the color indices. They are irrelevant for the calculation,
because at the end we will take the trace in color space. The first term in the
exponent is the same as in the abelian case, containing the derivatives, whereas
the second term, the sum of commutators, should give rise to the commutator
in the definition of the field strength tensor for non-abelian fields

Fµν (x) = ∂µAν (x)− ∂νAµ (x) + ig[Aµ (x) , Aν (x)], (22)

As we very swiftly observe, the expression we derived has shifted fields with
respect to the point x. In order to recover the commutator, we need to Taylor-
expand those fields as
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Aµ (x+ aν) = Aµ (x) + a∂νAµ (x) . (23)

Since the derivatives appearing in our expression will carry an extra a factor,
we drop them in our expansion, for we expect them to be small when close to
the continuum limit a → 0. On the other hand, the commutator terms now
involving the same field at the same point will vanish

[Aµ (x) , Aµ (x)] = 0,

and the commutators with reversed fields, like

[Aν (x) , Aµ (x)] = −[Aµ (x) , Aν (x)],

can be easily put in the right order by changing sign. Therefore the final ex-
pression becomes

Pµν = exp{−iga2 [∂µAν (x)− ∂νAµ (x)]− 1

2
g2a2 ([Aµ (x) , Aν (x)]

+[Aµ (x) , Aν (x)]− [Aµ (x) , Aν (x)]− [Aν (x) , Aµ (x)] =

exp{−iga [∂µAν (x)− ∂νAµ (x)]− 1

2
g2a2 (2[Aµ (x) , Aν (x)])}.

and by looking at (23), one can readily obtain the same result as in the abelian
case

Pµν = e−ia
2gFµν+O(a3). (24)

Substituting again in the expression of the action (note the trace in color space),
we recover the continuum expression for the gauge action, exactly in the same
way we did for abelian fields

SG =
2

g2

∑
x,µ,ν

ReTrColor (I − Pµν(x)) =

∫
V

d4x
[
Fµν (x)Fµν (x) +O(a2)

]
,

(25)
with an implicit sum over color understood.

To match my notation with that of Elvira, notice that the Nc factor in
β = 2Nc

g2 comes from the trace of the color matrices (including the identity!).
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