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Part 11

Fiber Nonlinearity



Why is it that optical nonlinearity is so important in fibe

Gaussian beam
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In free-space optics, a tight focus comes with a short depth-of-focu



 leading nonlinear effect in fibers is a modification of the refractive inde
,Optical Kerr effect”
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Remember the series expansion P =¢ (X(l)E + X( E? + X(J)E + .. )

We had truncated after the linear té’rm:enx(l)E
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In glassx(g) =0
Including the next term yields P =¢ {x(l) + X(B)EQ} E
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and finally n = ny+ nod

with intensity I = (no/Zo)E?

and nonlinearity coefficient ng =3-107"m*/W



The evolving phase of the light wave can be separated into a linear and a n¢
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with v =
I CAeff

Often used: nonlinearity length L, = (yP)?

Estimate of typical numerical values:

A=15um=0wm,=2nr-20Q THz
n, =3 - 1020 m?/W
c=3-108m/s
Ay = 40 um?

v=3.14 - 103 (W m)?

AssumingP=1Wand L = 1 km

= ¢,=3.14 rad
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Self Phase ModulatiQm;r

P(T) = sech®(T)
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nonlinear phase
follows power profile e
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instantaneous frequency
iIs modulated, too




Finding a nonlinear wave equation

Linear wave equation:

Ansatz for E: |
B, y, 2,1) = Az,y, 2, 1) eilot=002

Remove oscillating factor at optical frequency = envelope equation for A(z,t).

Introduce dispersion by a Fourier Technique:

AB = 61Aw+ﬁ2 —I—@Aw?’—t—... :
B, 0, B ?’ B 0°
—f—A = A—2 A ——A+ ...
"Bz g Tt et T
Add nonlinear term ANy, = nolfp.
Add loss term with A}, = icv/2.
AB = 51Aw+32 ﬂ?’A 3 4 .+50n21+i% ,
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Add nonlinear term ANy, = naol 5.

Add loss term with Afjoss = iv/2.

AB = ﬁlAw+%Aw2+%Aw3+...+ﬁon2[+i% :
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Choosing fonal = (wo/c) na(|A]?/Aet) = 7| Al*:
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Important special case Neglect third order dispersion and loss:
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Nonlinear Schrodinger Equation
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Solutions of the NLSE

9 P2A
%A(Z T) = ——52 a7z T iy|Al°A

We are mostly concerned with solutions at anomalous
dispersion

continuous lution:
g )“‘a A

This is a stable solution only for normal dispersion;
it is unstable in the anomalous dispersion regime.

This is known as Modulation Instability.



Modulation Instability (MI)

* cw solution of NLSE is unstable for anomalous dispersion
* Stability analysis reveals frequency band of sensitivity to perturbation
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* Perturbation grows exponentially; modulates the cw solution




Modulation Instability (MI)

* cw solution of NLSE is unstable for anomalous dispersion
* Stability analysis reveals frequency band of sensitivity to perturbation
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Ripple marks in sand: periodic structure from uniform agitation




Modulation Instability (MI)

* cw solution of NLSE is unstable for anomalous dispersion
* Stability analysis reveals frequency band of sensitivity to perturbation
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* Perturbation grows exponentially; modulates the cw solution
* Long term evolution? Solution of NLSE for this case found in

N. Akhmediev, V. I. Korneev, Theor. Math. Phys. 62, 1089 (1986)

* Was considered only recently: Akhmediev breather




Akhmediev Breather

AZ,T) =P [1+

] exp(iZ)

{:

b—0 for both a—0, a

—

2(1 — 2a) cosh(bZ) + ib sinh(b2)
v2a cos(wT) — cosh(bZ)
0< a <1/2
b = V8a— 16a?
w = wev1l—2a
B 4vFy
R A
Z = z/Lnyp
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‘ Discussion of the Akhmediev Breather |

2(1 — 2a) cosh(bZ) + ib sinh(b7)
v2a cos(wT) — cosh(bZ)

AZ,T)=+/P, [1+ ] exp(iZ)

- Propagation in Z with phase factor exp(i2)
- Modulation on constant background /)
- Oscillatory in time 7" due to coswT' term

- Symmetrically exponential in space Z due to hyperbolic functions

L (e =)

Remember: cosh(z) = % (" + e ") and sinh(z) = %

For large Z. hyperbolic functions dominate:

lim ‘A|2 = Po

Z—too

At Z =0, oscillatory part dominates:

2(1—2a
A0, T)=+/P |1+ \/;( i exp(iZ)

coswl — e



How to excite an Akhmediev breather?

1) Start with cw: infinite wave (in practice,
2) Perturb in suitable way:

long pulse)

* periodic (at a frequency for which there is gain)

* random (noise with frequency content

where there is gain)

3) Perturbation will grow fastest at frequency of maximum gain
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Akhmediev Breather at a = Va:
cw evolves into pulse train and back

0.4 |A]

cross section at Z = 0: 0
maximally expressed pulse train \/ . \/ | \/ . \/
Peak at |A|2 = 5,828 N2 EF RSN T W AR

time in units of period



CW with modulation: Related solution types

Remember
A, T, Z) = /Py [1 + M(a,T, Z)] exp(iZ)

with modulated part

( 2(1 — 2a) cosh(bZ) + ib sinh(bZ)

. 1 .
V2a cos(wT) — cosh(bZ) + 0<a<3  Akhmediev Breather
. » 4(1+2iZ) L : :
1(a,T,Z) = T wiT? 1 427 a=3 Peregrine Soliton

2(1 — 2a) cos(|b|Z) — i|b| sin(bZ)

1 _ .
| ™ vz cosh(||T) — cos(b|2) a> 3 Kuznetsov-Ma soliton
A
' '
N. Akhmediev, V. I. Korneev, D. H. Peregrine,
Theor. Math. Phys. 62, 1089 J. Aust. Math. Soc. B 25, 16

(1986) (1983)



CW with modulation: Related solution types

Remember

A, T, Z) = /Py [1 + M(a,T, Z)] exp(iZ)

with modulated part

M(a,T,Z) = {

( 2(1 — 2a) cosh(bZ) + ib sinh(bZ)
V2a cos(wT') — cosh(bZ)
4(1+2i2)

1+ w212 + 472
2(1 — 2a) cos(|b|Z) — i|b| sin(bZ)

L V2a cosh(|w|T) — cos(|b|Z)

power profile

_ Peregrine Solito

amplitude or power

amplitude pw

| .
0<a<3 Akhmediev Breather
1 . .
@=3 Peregrine Soliton
>5 Kuznetsov-Ma soliton
d B
4 ; 2




Arguably the most important solution of
the NLSE:
The (fundamental) soliton

The word ,soliton’ refers to a well-defined concept
to which the Peregrine and Kuznetsov-Ma solitons do not belong



The (fundamental) soliton

v >0, 82 <0

/ 1 .
A(Z7 T) — P1 sech (?) evyplz/z with P1T2 — |/i/2|
0

(up to trivial constant shifts in time, position, phase)

Az, T) envelope of electric field

z position

T time (in comoving frame)

i coefficient of group velocity dispersion

y coefficient of Kerr nonlinearity (contains n,)
P, peak power

T, pulse duration

Pulses of invariant shape, stable solutions of wave equation:

Solitons are the natural bits for telecom




a soliton propagates without change of shape
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———— time
—

temporal profile

spectral dlstanc
power
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spectral profile
2
s
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Length scalezp = 5 Ip=— ">

For comparison, temporal profile
of same sech? pulse
in the absence of nonlinearity



Scaling of the soliton

T P 20 En Nphot
Ins  224uW 28100 km  25.4f] 1.92-10°
100ps  2.24 mW 281 km 254 fJ 1.92-10°
10ps 224 mW 2810 m 2.54pJ 1.92-107
lps 224 W 281 m 25.4pJ 1.92-108
100fs  2.24 kW 281 mm 254 pJ 1.92-10°

Note FWHMr = 2 Ty cosh™'v2 = 1.763 Ty

Typical orders of magnitude of characteristic soliton parameters.

Assumed are a wavelength of 1.5 um, a fiber dispersion of 3,

PT7?

18]

—18 ps? /km

corresponding to ca. D = 15ps/(nmkm), and a nonlinearity coefficient v =
2.5-1072 W~ im™! corresponding to ns = 3- 1072 m?/W, and Aeg ~ 50 um?.
The table gives the peak power f’, the soliton period zy, its energy, and the
photon number, always rounded to three significant digits.
action W = |35/~ |= 7.2 - 10724 W s?,

In all cases the



How to excite a soliton?

B2
Suppose you laurghy = NQ%
distance, y distance N
: power |
A —
- 20 f—
time y—— 4 N time
- f—— -

Pulse launched with N=0.8 Pulse launched with N=1.2



Energy

12 1
10 1 : :
cumulated soliton energies

8 -

1 soliton energies 8
6 - 7
4 pulse energy

1 fundamental \b ‘
2 4 soliton > ;

- suri)lus en%zrgy (not:e changejof scale)i !

1 | | I I |
0 0.5 1 1.5 2 2.5 3 3.5

Soliton order N

For integer N,
N solitons are formed.

For non-integer N,
some energy is radiated a\



higher-order solitons

B2
Y
N=2
distance i /
v ‘ spectral  distance &
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higher-order solitons P1T02 _ NQ@
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PTE = NQ@

higher-order solitons

N=4
power distanc /“\ \A distance \ N&\
Vi =
&5 = =
‘ i"e — S frequency
— : -




FUNMers on a mattress
illustrate the principle of fiber solitons



John Scott Russell, 1844:

I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of
horses, when the boat suddenly stopped - not so

the mass of water in the channel which it had put

in motion; it accumulated round the prow of the
vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water,
which continued its course along the channel

apparently without change of form or diminution
of speed.

I followed 1t on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an

hour, preserving its original figure some thirty feet
long and a foot to a foot and a half in height.

Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel.

Such, in the month of August 1834, was my first chance interview with that singular and
beautiful phenomenon which I have called the Wave of Translation.



Soliton on the Scott Russell
Aqueduct

on the Union Canal, 12 July 1995.
Photo from Nature 376, 3 Aug 1995, pg 373






In the normal dispersion regime, a different type of solution arises!

v > 0, By <0 (anomalous dispersion)

T .
A(z,t) = /P, sech (T) e vF12/2

0
bright soliton

v >0, B2 >0 (normal dispersion) Dark soliton: tanh(t)
T :
A(z,t) = /Py tanh (—) eiPiz | 1o
. 1o i
dark (black) soliton 45| background
power profile tanh2(t)
0,0
05+ phase jump
'_."Iamplitude profile tanh(t)
K. 7y 3 W N 5 oNE o BTN
=% 12 ottt W

Remember th&mh?(7) = 1 — sech?(r)
to see that a dark soliton is a , dark pulse*



1,0 H

05+

Dark soliton: tanh(t)

background

power profile tanh?(t)

0,0
05+ phase jump
‘.".amplitude profile tanh(t)
O P R
] 1 | | ] ] ]
T T T T T Ll T
8 -6 -4 -2 0 2 4 6 8

power

distance




We consider a few more nonlinear effects:

* Cross phase modulation
* Four-wave mixing
* Inelastic scattering (Brillouin, Raman)



Cross phase modulation

Two coupled NLSE's

oAy _ i, 34
oz 9/

= + i (|A1]* +2|42*) Ay
o012 /|\
OA. i %A, y/
3—; = ‘—5522 6T22+@’}’2(|A2\2+2|A1\2)A2




Four wave
Wy + w2 = mklﬁélnge ki = niwi/c

k1‘|‘k2 — ki“‘k-ﬁl

sspectral power

<> frequency
equidistant!

Implication for data transmission on several wavelength channels:
Channel cross talk

Degenerate four wave
mixing

The two pump frequencies coincide



Phase matching

In the presence of dispersion, different frequency components may have different wa
= Relative phase varies, energy transfer thwarted
= To reduce channel cross talk, employ strong dispersion

= To facilitate sideband buildup, minimize differential phase evolution

Ak = Akgper + Aknp = 0



Inelastic scattering processes

Brillouin Scattering:
Electrostriction creates sound wave which acts as moving grating

Raman Scattering: 1 -
E pump wavelength: 1um
& (300 THz)
®
=
2 0,5-
Ao frequency response
c )
=S of Raman gain
= in optical fiber
Q)
4
0 1 1 1 1 1 1 1
0 10 20 30 40

frequency difference / THz
* Causes signals to shift their frequency
* Can be used to provide gain: lasers, amplifiers



APUMp light 840 mW

150 S{S, S,

S4

-
o
o

peak power (m\W/1,5 nm)
(6]
o

1.0 1.2 1.4 1.6
wavelength (um)

Raman scattering spectrum with five scattering orders



Corrections to the propagation equation for a non-
iIdealized situation

In reality several corrections may

apply:

Some effects are not captured in the
NLSE,

but may be Nég§Fibed by additional

terms e/

C0A 0% A PA 1 84A

"0: _52 oT? _ﬁdﬁ ~oaPigr T
—7]AIPA

Dispersion:

Series expansion around operating wavelength.

Close to the zero, higher order terms gain
importance

series expansion
of dispersion

Dispersion coefficient B, [ps2/km]
F 3

10

0

-10 4

Wavelength [um]

1.0

w ™™



Corrections to the propagation equation for a non-

iIdealized situation
In reality several corrections may
apply:
Some effects are not captured in the
NLSE,
but may be Ngeg¢Fibed by additional

terms e/

0A 0°A PA 1 34A series expansion
15 — _62 972 _ﬁdﬁ - _54 8T4 of dispersion
— v |A]2A]- % 8% (|A|2A) + TR'}/A;T|A|2 «—— other nonlinear terms

Raman scattering:

Energy is continuously transferred from the short-wave
to the long-wave side - there is a continuous shift of the
central frequency of optical signals which scales with 7.
(May be neglected for t>5 ps)

Ramn gain factor /10-13 m/W

On other hand: Possibility of amplification with pump wave.

14

0,54

pump wavelength: 1pm

0
0

10 20 30 40

frequency difference / THz




Corrections to the propagation equation for a non-

iIdealized situation
In reality several corrections may
apply:
Some effects are not captured in the
NLSE,
but may be Ngeg¢Fibed by additional

terms e/

0A 0% A PA 1 34A series expansion
1 — = —[32 _/65___54 SR : i
O o772 T3 8T4 of dispersion
Yy O
— v |A]PAl- % 9T (|A|2A) + TR'}/A |A|2 other nonlinear terms
B EA +«—— |oss
2
Losses

can be compensated by amplifiers
(e.g. with Er-doped fiber, typically every 50-100 km )
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