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We introduce the concept of quantum field tomography, the efficient and reliable reconstruction of unknown quantum fields based on data of correlation functions. At the basis of the analysis is the concept of continuous matrix
product states, a complete set of variational states grasping states in quantum field theory. We innovate a practical method, making use of and developing tools in estimation theory applied in the context of compressed sensing
such as Prony methods and matrix pencils, allowing us to faithfully reconstruct quantum field states based on low-order correlation functions. In the absence of a phase reference, we highlight how specific higher order correlation
functions can still be predicted. We exemplify the functioning of the approach by reconstructing randomised continuous matrix product states from their correlation data and study the robustness of the reconstruction for different
noise models. Furthermore, we apply the method to data generated by simulations based on continuous matrix product states and using the time-dependent variational principle. The presented approach is expected to open up
a new window into experimentally studying continuous quantum systems, such as encountered in experiments with ultra-cold atoms on top of atom chips. By virtue of the analogy with the input-output formalism in quantum
optics, it also allows for studying open quantum systems.
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Motivation

Full quantum state tomography is highly inefficient: Exponentially
many parameters.

Continuous system: In principle infinitely many degrees of freedom.

Ansatz: Identify the right model in which to represent the states
with appropriate sparsity structure—physical corner of Hilbert space
[1, 2].

Using tensor networks, tomography of quantum fields becomes
feasible.

Translationally invariant cMPS [3]

Variational class of 1D quantum field states.∣∣ΨQ,R
〉

= traux

(
P e

∫ L
0 dx(Q⊗1̂+R⊗ψ̂

†(x))
)
|Ω〉

Vacuum state |Ω〉, field operators ψ̂
†(x) with

[
ψ̂(y), ψ̂†(x)

]
= δ (y − x)

Length of the system L
Variational parameters Q, R ∈ Cd×d—in finite-dimensional auxiliary system
Bond dimension d

The larger d , the better the "physical corner of Hilbert space" is
covered.

Correlation Functions in cMPS formalism

Example: density-like 3-point function.

C (3)(τ1,τ2)

=
〈

ΨQ,R
∣∣ ψ̂†(τ1 + τ2)ψ̂†(τ1)ψ̂†(0)ψ̂(0)ψ̂(τ1)ψ̂(τ1 + τ2)

∣∣ΨQ,R
〉

= tr
((

R⊗R
)
eT τ1

(
R⊗R

)
eT τ2

(
R⊗R

)
eT (L−τ1−τ2)

)
L→∞

−→
d2

∑
k1,k2=1

M1,k1Mk1,k2Mk2,1︸ ︷︷ ︸eλk1
τ1eλk2

τ2

:= ρk1,k2

Transfer matrix T = Q⊗1d +1d⊗Q + R⊗R ∈ Cd2×d2
consisting

of the variational parameter matrices Q and R .

M is R⊗R in the diagonal basis of transfer matrix T .

λk ∈ C, eigenvalues of T—"poles".

ρk1,k2 ∈ C—"residues".

Goal

Given: n-point function

C (n)(τ1, . . . ,τn−1) =
d2

∑
k1,...,kn−1=1

M1,k1Mk1,k2 . . .Mkn−1,1e
λk1

τ1 . . .eλkn−1
τn−1

of quantum field state
∣∣ΨQ,R

〉
= traux

(
P e

∫ L
0 dx(Q⊗1̂+R⊗ψ̂

†(x))
)
|Ω〉.

Task: Reconstruction of parameter matrices Q and R and predict
correlation functions of arbitrary order.

I II III

Reconstruction of the poles and residues (I)

Given:

C (n)(τ1, . . . ,τn−1) =
d2

∑
k1,...,kn−1=1

ρk1,...,kn−1e
λk1

τ1 . . .eλkn−1
τn−1

Wanted: {λk} ,
{

ρk1,...,kn

}
.

Nonlinear problem – hard to solve!

Reconstruction of the poles (Ia):
Matrix Pencil Method [4]

Determine poles {λk} independently. from the residues {ρk,...}
Input: Discretized 2-point function Cj = ∑

d2

k=1ρkeλk∆τ · j ,
j = 0, . . . ,N−1, sampling interval ∆τ ,
generalization to n-point function possible.

Build two Hankel matrices C [1] =

 C0 C1 . . .CN/2−1
C1 C2 . . . CN/2... ... ...

CN/2−1CN/2 . . . CN−2

 and

C [2] =

 C1 C2 . . . CN/2
C2 C3 . . .CN/2+1... ... ...

CN/2CN/2+1 . . . CN−1

.

Decomposition: C [1] = V1 ·A ·V2, C [2] = V1 ·A ·V0 ·V2.

Diagonal matrices A = diag (ρ1, . . . ,ρd2),
V0 = diag

(
eλ1∆τ, . . . ,eλd2∆τ

)
and Vandermonde matrices

V1 = V T
2 =


1 1 . . . 1

eλ1∆τ eλ2∆τ eλd2∆τ

... ... ...(
eλ1∆τ

)N/2−1(
eλ2∆τ

)N/2−1
. . .
(

eλd2∆τ

)N/2−1


V0, V1, V2 contain the poles, A contains the residues.

Consider the matrix pencil C [2]− γC [1] = V1A (V0− γ 1d2)V2.

γ = eλk∆τ for k = 1, . . . ,d2 ⇐⇒ rank
(
C [2]− γC [1]

)
= d2−1.

We obtain λk from solving the GEVP C [2]v = γC [1]v .

Several refinements for better noise performance.

Reconstruction of the residues (Ib)

Example: C (2) (τ1) = ∑
d2

k=1ρkeλkτ1, n-point function analogously.

Build Vandermonde matrix out of the determined λj .

Solve
1 1 . . . 1

eλ1∆τ eλ2∆τ eλd2∆τ

... ... ...(
eλ1∆τ

)N−1 (
eλ2∆τ

)N−1
. . .
(

eλd2∆τ

)N−1




ρ1

ρ2
...

ρd2

 =


C0

C1
...

CN−1


in the least square sense.

Reconstruction of M (II)

Given: Poles and residues of 3-point function

C (3)(τ1,τ2) =
d2

∑
k1,k2=1

ρk1,k2e
λk1

τ1eλk2
τ2

Wanted: Decomposition of ρk1,k2 = M1,k1Mk1,k2Mk2,1.

M ∈ Cd2×d2
can be transformed without changing C (n) such that

M1,k = 1 for k = 1, . . . ,d2.

⇒ ρk ,j
ρk ,1

=
1·Mj ,kMk ,1
1·1·Mk ,1

= Mj,k

Better noise properties: Averaging over all combinations of residues
that lead to Mj,k .

Having determined M and poles {λj}, density-like correlation
functions C (n) of arbitrary order n can be constructed

Reconstruction of R (IIIa)

Given: D = diag (λ1, . . . ,λd2) = X−1TX and M = X−1
(
R⊗R

)
X

Indeterminate: change-of-basis matrix X .

Gauge invariance: (Q, R) and (Z−1QZ ,Z−1RZ ) for arbitrary
invertible Z represent the same state.

We need to determine Q and R only up to conjugation with an
invertible matrix.

Strategy: Choose R diagonal and determine Q accordingly.

Diagonalize M 7→Mdiag, σ
(
Mdiag

)
= σ (M) = σ

(
R⊗R

)
.

⇒ The entries of Mdiag can be permuted such that the diagonal
matrix has tensor-product form: Mdiag 7→ Rrec⊗Rrec.

Diagonal matrix Rrec is similar to R :
It exists a gauge matrix W with Rrec = W−1RW .

Reconstruction of Q (IIIb)

Given: D = diag ({λk}) , M = X−1
(
R⊗R

)
X .

D−M = X−1
(
Q⊗1d +1 d⊗Q

)
X .

Q will in general not be diagonal in the same gauge where R is
diagonal.

Applying to D−M the same change-of-basis matrix, that
transforms M to Rrec⊗Rrec, yields

Qrec⊗1d +1 d⊗Qrec.

One can show that Qrec is similar to Q and Qrec = W−1QW with
the same W as above.

Qrec and Rrec are gauged correctly: The variational parameter
matrices of

∣∣ΨQ,R
〉
are reconstructed.

Numerical Simulations
Randomly generated noisy cMPS correlation functions.

Recovery rate of the poles using the Matrix Pencil Method:
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Experimental realisation [5, 6]

Setup: Coherent split of ultracold atoms (1D BEC) in Atom Chip

Correlation functions from ToF measurements.
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Successful reconstruction of 6-point function from 4-point function
with a mean error of 2.1 %.
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