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Abstract

A unified framework to describe lattice gauge theories by means of tensor networks is presented, 
based on the quantum link formulation. It is efficient as it exploits the high amount of local symmetry content 
native of these systems describing only the gauge invariant subspace. Compared to a standard tensor 
network description, the gauge invariant one allows to speed-up real and imaginary time evolution of a 
factor that is up to the square of the dimension of the link variable. Additionally, we present a cellular 
automata analysis which estimates the gauge invariant Hilbert space dimension as a function of the number 
of lattice sites, and that might guide the search for effective simplified models of complex theories.

A lattice gauge theory (LGT) has two types of local degrees of freedom:

- Matter fieldsMatter fields: can be fermionic or bosonic matter, they live on the lattice sites

- Gauge fieldsGauge fields: are bosonic, they live on the links of the lattice

Abelian LGT interaction:

Quantum Link Prescription

Once a finite-dimensional representation of the gauge group has been selected for the gauge boson, the 
bosonic operator can be recast as a bilinear operator. Effectively, the gauge boson is split into a pair of 
degrees of freedom, called “rishons”.

MPO / PEPO formulation of the combined link constraint

All the link constraints combined can be formulated as a many-body projector Q, which in 1D allows an 
exact Matrix Product Operator formulation (or a Projected Entangled Pair Operator in 2+D), with bondlink 
dimension bound by:

It exhibits a second-order quantum 
phase transition between two 
phases, driven by the staggered 
chemical potential:

Disordered phase - Staggered 
charges and electric flux direction.

Ordered phase - No charges and 
uniform electric flux direction.

arXiv:1404.7439; Phys. Rev. Lett. 112, 201601 (2014).

Non-abelian LGT interaction:

Gauge symmetry (generalized Gauss' Law)

The dynamics preserves an extensive number of symmetries, each one 
having support on a vertex (site and links connected to it). The “physical” 
quantum space is made out of those states that belong to a specific 
irreducible representation for each of these gauge symmetries (e.g. 
invariant irrep). Such gauge constraint is also known as generalized 
Gauss' Law.

QED

QCD

The gauge constraint reduces the 
number of possible local 

configurations.

Here abelian fermionic lattice QED 
with two-level electric field: configs. 

reduced from 32 to d=10.

An artificial, abelian symmetry arises: the total number of rishon per link is a conserved quantity. This “link 
symmetry” is also local, and commutes with the gauge symmetry. The two together form the full gauge 
group of the quantum link model.

Selection rules (Gauge, Link):

Gauge constraint: two particles, matter + 
rishons, in every vertex (blue square).

Link constraint: one particle on every link 
(orange bubble).

Preserved by:

The gauge constraint defines the effective computational local basis (in this example: d = 10).

The link constraint imposes an abelian selection rule between nearest nerighbour computational states
(example: |1, 2> forbidden, |1, 4> allowed. On two neighboring sites, 48 states survive out of 100).

Where

and can be made diagonal by choosing a suitable local basis (the one that simultaneously diagonalizes 
gauge and link constraints).

Computational speed-up

Like for a global symmetry, upholding the local link constraint reduces the two-site computational space and 
allows one to perform numerical operations in a block-wise fashion. The advantage with respect to global 
symmetries is that we do not have to propagate the charges throughout the network, since the link 
symmetry is local: little bookkeeping!

Example: 1D gauge invariant time-evolution with a Matrix Product Density Operator (MPDO).

Step 1 - Contraction

Standard computational cost:

Reduced to:

Step 2 – Split (SVD-based)

Standard computational cost:

Reduced to:

With m being the original correlation bondlink dimension, b the bath bondlink dimension,   the number of 
surviving states on two neighboring sites (in the example, speed-up of roughly four times).

First results: 1D fermionic QED with two-level electric field

This scenario corresponds to a Schwinger model with d = 3 local states, and     = 2 rishon charges.

The global symmetry being broken is the Charge-Parity symmetry, which is a Z
2
 group. One expects to find 

the critical exponents of the 1+1D Ising model.

Critical point found via finite size 
scaling.

Critical exponents compatible 
with quantum ising.

Growth of Hilbert spaces dimension: the Cellular Automata

Due to the presence of the link constraint, the Hilbert dimension of a quantum link model on    vertices is 
less than Dim(   ) = d  . In 1D it is easy to calculate Dim(  ) recursively, with a Cellular Automata machinery.

1) Draw the automata (bubbles 
and arrows) according to the link 
constraint rules.

2) At zero lattice sites,start from 
1 in every bubble.

3) for every lattice site we add, 
we propagate the numbers 
through the arrows.

4) Sum the numbers within the 
bubbles to obtain the total Hilbert 
space dimension. 

Example above: for the fermionic QED with two-level electric field, one 
obtains the Fibonacci sequence.

with     being the golden ratio.
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