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Motivation
• Study robustness of topological order.[1,2]

• Ground state of string-net model [3] is
topologically ordered.

• Excitations are (non-) Abelian anyons.

• Simpler (non-) Abelian phases have been
studied (e.g. in [4,5,6]).

• Investigate robustness of richer phases.

The Ising string-net model
The unperturbed model [3]:

• Defined on hexagonal lattice

• Microscopic degrees of freedom are de-
fined on links and take values 1,σ,ψ.

• Branching rules constrain Hilbert space:
the allowed vertex configurations for
Ising anyons are:
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• Hamiltonian HSN is given by
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flux through the plaquette p.

• No flux corresponds to eigenvalue bp = 1.

• Fluxes σ,ψ correspond to bp = 0.

General properties of the model
• Eigenvalues bp of Bp’s are conserved

quantities: [Bp, HSN] = 0.

• Model realizes time-reversal invariant
(doubled) phase D(Ising).

• Topological degeneracy of the ground
state = 32g (g = 1 the genus of the torus,
g = 0 for the plane).

• Fluxes ψ (σ) are (non-) Abelian anyons.

• Non-local fusion channels of fluxes deter-

mined via
⊗ σ ψ
σ 1⊕ψ σ
ψ σ 1

.

• Local fluxes and their non-local fusion
channels characterize eigenstates of HSN

completely.

• Eigenstates form tensionless string nets in
the bond basis.

Local perturbation
Adding local perturbation [7,8]

Hloc = −
∑
e

P1
e ,

where P1
e projects onto state 1 at link e.

• Hloc introduces tension on σ, ψ-strings.

• Anyonic excitations become dynamic,
dressed quasi-particles.

• Condensation of (non-) Abelian anyons
yields continuous transition to (non-)
topological phase [9].

Perturbed string-net model
Investigate phase diagram of the Hamiltonian

H = cos (θ)HSN + sin (θ)Hloc.

• Topological D(Ising)-phase for θ ∈ [θc2, θ
c
1]

• Polarized 1-phase between θc1 and θ = π

• Star-crystal phase between θ = 3
2π and θc2

Phase transition at θc1
• Finite-size and finite-order scaling for critical

value yields: θc1 ≈ 0.261.
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• Critical exponents obtained by fitting the
series-expansions and data-collapse of ED-
data near θc1 yields

∆ ∼ (θ − θc)zν → zν ≈ 0.4,

ω|θc ∼ |k− kc|z → z ≈ 1,

∂2
θe0 ∼ (θ − θc)−α → α ≈ 0.8.

• Consistent with hyperscaling relation for
2nd-order phase transitions 2−α = ν(2+z).

Star-crystal phase at θ=(3π/2)+

Effective description at θ =
(

3π
2

)+ yields dimer
model:

Heff = −
∑
p

[
t
( ∣∣∣∣ 〉〈 ∣∣∣∣+ h.c.

)
+

v

∣∣∣∣ 〉〈 ∣∣∣∣+ 1
]
,

with t = 1/8 cos θ and v = 1/4 cos θ.

• Ground states adiabatically connected to
ground states at t = 0.

• Translational symmetry-breaking star-
crystal order found [10].

• Realizes gapped, non-topological phase.

Phase transition at θc2
• dlog-Padé extrapolation for critical value

yields: θc2 ≈ 5.57.
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• Continuous transition between topological
and translational symmetry breaking phase.

Method I: pCUT
A Hamiltonian H can be unitarily transformed
onto an effective quasi-particle (QP) conserv-
ing Hamiltonian Heff using a continuous uni-
tary transformation (CUT)[11].
This transformation can be performed pertur-
batively [12].

• Results valid directly in the thermody-
namic limit

• high-order series expansion (SE)

Application to the perturbed string net:
• The unperturbed model has a discrete

spectrum with a gap ∆ = 1 between each
energy level.

• Build a QP-picture for the non-Abelian
fluxes, which captures non-local features
like braiding.

• Compute the expansion of the ground-
state energy per plaquette e0 as well as
the 1QP-hopping elements.

• Diagonalize Heff analytically to obtain
1QP-gap ∆.

Linked-cluster expansion
• Linked-cluster expansions mandatory for

high-order results of the pCUT.

• QP-picture allows linked-cluster expan-
sion also for topologically ordered phases
harboring non-Abelian excitations.

• Maximal order reached up to 18.

Method II: Exact diagonalization
• Non-perturbative

• Finite-size effects

• Consider typically systems with up to
134 225 920 states (13 plaquettes).

• Lanczos algorithm yields low-energy
spectrum.

Outlook
• Characterize phase for θ ∈

[
π, 3π

2

]
.

• Consider other string tensions as pertur-
bations (e.g. as in [13]).

• Observables witnessing topological order
(e.g. entanglement entropy, S-matrix[14]).

• Continuous phase transitions driven by
condensation of chiral excitations?

• Study impact of topology onto criticality.

• Is there universality in topological phase
transitions?
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