Ising anyons with a string tension

Marc D. Schulz^{1,†}, S. Dusuel², G. Misguich³, K.P. Schmidt⁴, and J. Vidal⁵

¹ University of Minnesota, ² Lycée Saint-Louis, Paris, ³ IPT, CNRS - CEA, Gif-sur-Yvette, ⁴ TU Dortmund, ⁵ LPTMC, UPMC - CNRS, Paris [†] mdschulz@umn.edu

Motivation

- Study robustness of topological order.[1,2]
- Ground state of string-net model [3] is topologically ordered.
- Excitations are (non-) Abelian anyons.
- Simpler (non-) Abelian phases have been studied (e.g. in [4,5,6]).
- Investigate robustness of richer phases.

Perturbed string-net model

- Investigate phase diagram of the Hamiltonian
 - $H = \cos(\theta) H_{\rm SN} + \sin(\theta) H_{\rm loc}.$
- Topological **D**(Ising)-phase for $\theta \in [\theta_2^c, \theta_1^c]$
- Polarized 1-phase between θ_1^c and $\theta = \pi$
- Star-crystal phase between $\theta = \frac{3}{2}\pi$ and θ_2^c

Phase transition at θ_1^c

Method I: pCUT

A Hamiltonian *H* can be unitarily transformed onto an effective quasi-particle (QP) conserving Hamiltonian H_{eff} using a continuous unitary transformation (CUT)[11]. This transformation can be performed perturbatively [12].

- Results valid directly in the thermodynamic limit
- high-order series expansion (SE)

The unperturbed model [3]:

• Defined on hexagonal lattice

The Ising string-net model

- Microscopic degrees of freedom are defined on links and take values $1, \sigma, \psi$.
- Branching rules constrain Hilbert space: the allowed vertex configurations for Ising anyons are:

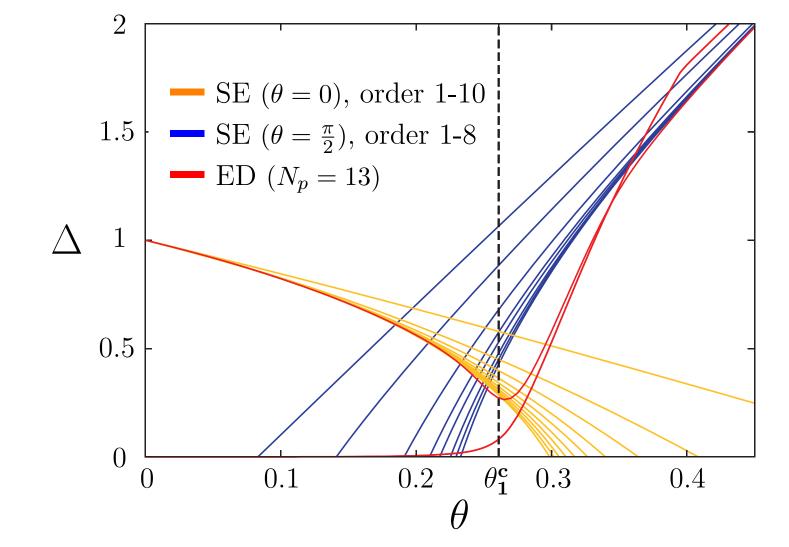
 $1 1 1 , \sigma \sigma \sigma \sigma , \psi \psi \psi$

• Hamiltonian $H_{\rm SN}$ is given by

$$H_{\rm SN} = -\sum_{\rm plaquettes } B_p,$$

- where $B_p = \frac{1}{4}B_p^1 + \frac{\sqrt{2}}{4}B_p^{\sigma} + \frac{1}{4}B_p^{\psi}$ measures flux through the plaquette *p*.
- No flux corresponds to eigenvalue $b_p = 1$.
- Fluxes σ , ψ correspond to $b_p = 0$.

• Finite-size and finite-order scaling for critical value yields: $\theta_1^c \approx 0.261$.



• Critical exponents obtained by fitting the series-expansions and data-collapse of EDdata near θ_1^c yields $\Delta \sim (\theta - \theta_c)^{z\nu} \quad \rightarrow \quad z\nu \approx 0.4,$

 $\omega|_{\theta_c} \sim |\mathbf{k} - \mathbf{k}_c|^z \quad \rightarrow \quad z \quad \approx 1,$ $\partial_{\theta}^2 e_0 \sim (\theta - \theta_c)^{-\alpha} \rightarrow \alpha \approx 0.8.$

• Consistent with hyperscaling relation for 2nd-order phase transitions $2 - \alpha = \nu(2+z)$.

Star-crystal phase at $\theta = (3\pi/2)$

Effective description at $\theta = \left(\frac{3\pi}{2}\right)^+$ yields dimer

- Application to the perturbed string net:
 - The unperturbed model has a discrete spectrum with a gap $\Delta = 1$ between each energy level.
 - Build a QP-picture for the non-Abelian fluxes, which captures non-local features like braiding.
 - Compute the expansion of the groundstate energy per plaquette e_0 as well as the 1QP-hopping elements.
 - Diagonalize H_{eff} analytically to obtain 1QP-gap Δ .

Linked-cluster expansion

- Linked-cluster expansions mandatory for high-order results of the pCUT.
- QP-picture allows linked-cluster expansion also for topologically ordered phases harboring *non-Abelian* excitations.
- Maximal order reached up to 18.

General properties of the model

- Eigenvalues b_p of B_p 's are conserved quantities: $[B_p, H_{SN}] = 0.$
- Model realizes time-reversal invariant (doubled) phase D(Ising).
- Topological degeneracy of the ground state = 3^{2g} (g = 1 the genus of the torus, g = 0 for the plane).
- Fluxes $\psi(\sigma)$ are (non-) Abelian anyons.
- Non-local fusion channels of fluxes deter-

mined via

 $\boldsymbol{\sigma}$ $egin{array}{ccc} 1 \oplus oldsymbol{\psi} & oldsymbol{\sigma} \end{array}$ σ

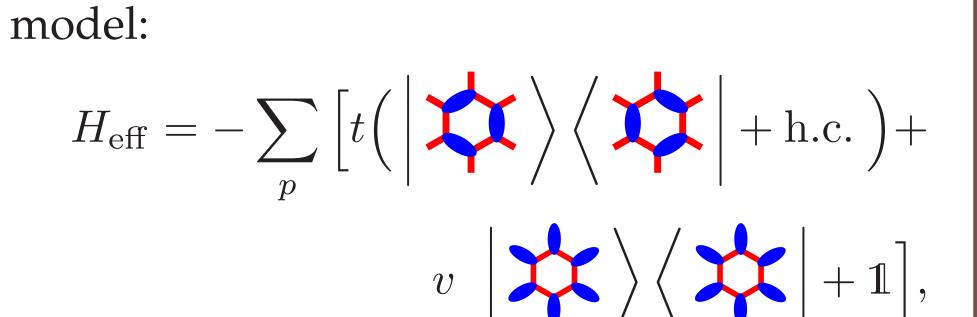
- Local fluxes and their non-local fusion channels characterize eigenstates of $H_{\rm SN}$ completely.
- Eigenstates form tensionless string nets in

Method II: Exact diagonalization

- Non-perturbative
- Finite-size effects
- Consider typically systems with up to 134 225 920 states (13 plaquettes).
- Lanczos algorithm yields low-energy spectrum.

Outlook

- Characterize phase for $\theta \in \left[\pi, \frac{3\pi}{2}\right]$.
- Consider other string tensions as perturbations (e.g. as in [13]).
- Observables witnessing topological order (e.g. entanglement entropy, S-matrix[14]).
- Continuous phase transitions driven by



with $t = 1/8 \cos \theta$ and $v = 1/4 \cos \theta$.

- Ground states adiabatically connected to ground states at t = 0.
- Translational symmetry-breaking starcrystal order found [10].
- Realizes gapped, non-topological phase.

Phase transition at θ_2^c

the bond basis.

Local perturbation

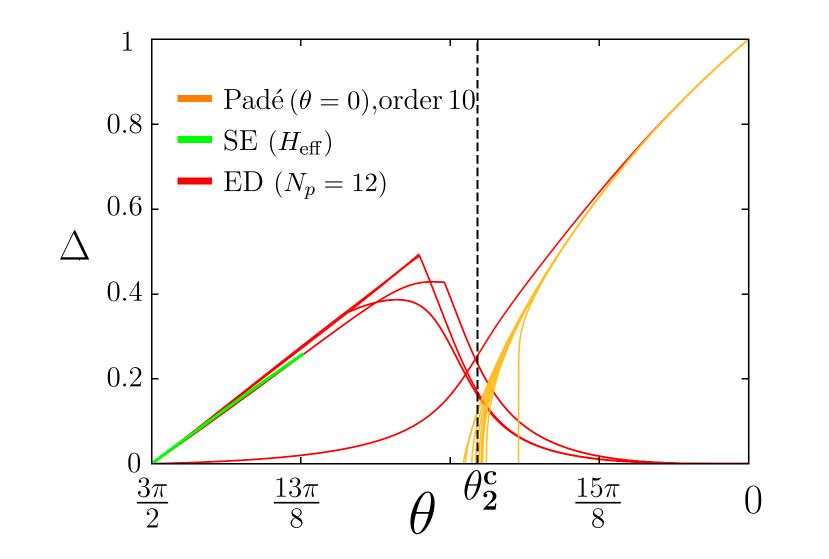
Adding local perturbation [7,8]

 $H_{\rm loc} = -\sum \mathcal{P}_e^1,$

where \mathcal{P}_{e}^{1} projects onto state 1 at link *e*.

- $H_{\rm loc}$ introduces tension on σ , ψ -strings.
- Anyonic excitations become dynamic, dressed quasi-particles.
- Condensation of (non-) Abelian anyons yields continuous transition to (non-) topological phase [9].

• dlog-Padé extrapolation for critical value yields: $\theta_2^c \approx 5.57$.



• Continuous transition between topological and translational symmetry breaking phase.

condensation of chiral excitations?

• Study impact of topology onto criticality.

• Is there universality in topological phase transitions?

References

[1] I. Klich, Ann. Phys. **325** 2120 (2010) [2] S. Bravyi, M.B. Hastings, S. Michalakis, J.Math.Phys. **51** 093512 (2010) [3] M.A. Levin, X.-G. Wen, Phys. Rev. B 71, 045110 (2005). [4] S. Dusuel, M. Kamfor, R. Orús, K.P. Schmidt, J. Vidal, PRL 106 107203 (2011) [5] M.D. Schulz, S. Dusuel, R. Orús, J. Vidal, K.P. Schmidt, New J. Phys. 14, 025005 (2012) [6] M.D. Schulz, S. Dusuel, K.P. Schmidt, J. Vidal, PRL **110**, 147203 (2013) [7] C. Gils, J. Stat. Mech.: Theory Exp., P07019 (2009) [8] M.D. Schulz, S. Dusuel, G. Misguich, K.P. Schmidt, and J. Vidal, PRB 89, 201103(R) (2014) [9] F.A. Bais, J.K. Slingerland, PRB **79**, 045316 (2009) [10] R. Moessner, S.L. Sondhi, P. Chandra, PRB 64, 144416 (2001) [11] F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994) [12] C. Knetter, G.S. Uhrig, EPJ B 13, 209 (2000) [13] F.J. Burnell, S.H. Simon, J.K. Slingerland, New J. Phys. 14, 015004 (2012) [14] F.A. Bais, J.C. Romers, New J. Phys. 14, 035024 (2012)