Anyons & Topological Phases

Marc D. SCHULZ

University of Minnesota

Numerical and analytical methods for strongly correlated systems

26/07/2014

This talk is not about...

- experimental realizations
- symmetry-protected topological order
 (⇒ no topological insulators)
- edge-mode physics

This talk is not about...

- experimental realizations
- symmetry-protected topological order
 (⇒ no topological insulators)
- edge-mode physics

... but ...

- about topological quantum order
- dealing with fine-tuned models
- considering bulk properties
- is a pedestrian approach to topological order

This talk is not about...

- experimental realizations
- symmetry-protected topological order
 (⇒ no topological insulators)
- edge-mode physics

... but ...

- about topological quantum order
- dealing with fine-tuned models
- considering bulk properties
- is a pedestrian approach to topological order

Be aware of (over-) simplifications!

Marc D. SCHULZ (UMN)

Anyons & Topological Phases

- Gapped phases
- Ground-state degeneracy depends on topology of the system
- Ground states not distinguishable by local operators
 - \Rightarrow no local order parameter
 - \Rightarrow robustness of topological phases
- Long-range entanglement
- Elementary gapped excitations are so-called anyons

- Gapped phases
- Ground-state degeneracy depends on topology of the system
- Ground states not distinguishable by local operators
 - \Rightarrow no local order parameter
 - \Rightarrow robustness of topological phases \rightsquigarrow Kai Schmidt's talk
- Long-range entanglement
- Elementary gapped excitations are so-called anyons

- Gapped phases
- Ground-state degeneracy depends on topology of the system
- Ground states not distinguishable by local operators
 - \Rightarrow no local order parameter
 - \Rightarrow robustness of topological phases
- Long-range entanglement
 - → Frank Pollmann's talk
- Elementary gapped excitations are so-called anyons

- Gapped phases
- Ground-state degeneracy depends on topology of the system
- Ground states not distinguishable by local operators
 - \Rightarrow no local order parameter
 - \Rightarrow robustness of topological phases
- Long-range entanglement
- Elementary gapped excitations are so-called anyons

- Gapped phases
- Ground-state degeneracy depends on topology of the system
- Ground states not distinguishable by local operators
 - \Rightarrow no local order parameter
 - \Rightarrow robustness of topological phases
- Long-range entanglement
- Elementary gapped excitations are so-called anyons

e.g. gapped spin liquids

- Gapped phases
- Ground-state degeneracy depends on topology of the system
- Ground states not distinguishable by local operators
 - \Rightarrow no local order parameter
 - \Rightarrow robustness of topological phases
- Long-range entanglement
- Elementary gapped excitations are so-called anyons

e.g. gapped spin liquids

- Gapped phases
- Ground-state degeneracy depends on topology of the system
- Ground states not distinguishable by local operators
 - \Rightarrow no local order parameter
 - \Rightarrow robustness of topological phases
- Long-range entanglement
- Elementary gapped excitations are so-called anyons

e.g. gapped spin liquids

→ Frederic Mila's talk

- Gapped phases
- Ground-state degeneracy depends on topology of the system
- Ground states not distinguishable by local operators
 - \Rightarrow no local order parameter
 - \Rightarrow robustness of topological phases
- Long-range entanglement
- Elementary gapped excitations are so-called anyons

e.g. gapped spin liquids

Outline

Introduction

Anyons

Marc D. SCHULZ (UMN)

Anyons & Topological Phases

5 / 16

Introduction

Anyons

5 / 16

(aka \mathbb{Z}_2 gauge theory in (2+1)D)

Lattice

- Defined (here) on a square lattice
- Microscopic degrees of freedom:
 - located on the links
 - spin- $\frac{1}{2}$: $|\uparrow\rangle$, $|\downarrow\rangle$.

(aka \mathbb{Z}_2 gauge theory in (2+1)D)

Lattice

- Defined (here) on a square lattice
- Microscopic degrees of freedom:
 - located on the links

• spin-
$$\frac{1}{2}$$
: $|\uparrow\rangle$, $|\downarrow\rangle$.

(aka \mathbb{Z}_2 gauge theory in (2+1)D)

Lattice

- Defined (here) on a square lattice
- Microscopic degrees of freedom:
 - located on the links
 - spin- $\frac{1}{2}$: $|\uparrow\rangle$, $|\downarrow\rangle$.

The Hamiltonian

$$H_{TC} = -J \sum_{\text{vertices } s} A_s - J \sum_{\text{plaquettes } p} B_p$$

The Hamiltonian

$$H_{TC} = -J \sum_{\text{vertices } s} A_s - J \sum_{\text{plaquettes } p} B_p$$

 A_s 's and B_p 's not only commuting but also frustration free \Rightarrow minimize each term separately

 A_s 's and B_p 's not only commuting but also frustration free \Rightarrow minimize each term separately

–JAs

- minimized for even number of $|\downarrow\rangle$ at vertex *s*
- ⇒ ground state(s) formed by closed loop configurations

 A_s 's and B_p 's not only commuting but also frustration free \Rightarrow minimize each term separately

-JAs

- minimized for even number of $|\downarrow\rangle$ at vertex s
- ⇒ ground state(s) formed by closed loop configurations

$-JB_p$

- induce local fluctuations of loop configurations
- \Rightarrow ground state(s) formed by superposition of loops

 A_s 's and B_p 's not only commuting but also frustration free \Rightarrow minimize each term separately

- minimized for even number of $|\downarrow\rangle$ at vertex s
- ⇒ ground state(s) formed by closed loop configurations

$-JB_p$

- induce local fluctuations of loop configurations
- ⇒ ground state(s) formed by superposition of loops

 A_s 's and B_p 's not only commuting but also frustration free \Rightarrow minimize each term separately

- minimized for even number of $|\downarrow\rangle$ at vertex s
- ⇒ ground state(s) formed by closed loop configurations

$-JB_p$

- induce local fluctuations of loop configurations
- ⇒ ground state(s) formed by superposition of loops

loop gas without string tension

excitations

charge-excitations

•
$$\sigma_i^x \frac{1+A_s}{2} = \frac{1-A_s}{2} \sigma_i^x$$

 \Rightarrow string of $\sigma^{\rm X}_i$ creates charges at its endpoints

$$X |\mathbf{gs}\rangle =$$

flux-excitations

•
$$\sigma_i^z \frac{1+B_p}{2} = \frac{1-B_p}{2} \sigma_i^z$$

 \Rightarrow string of σ_i^z creates fluxes at its endpoints

$$Z |\mathbf{gs}\rangle =$$

composite-excitations

- endpoints of open X,
 Z-string yield charge-flux composite
- $\Rightarrow \text{ open strings entering region} \\ \text{defining particle type}$

$$XZ |\mathbf{gs}\rangle =$$

- charges are (hardcore-) bosons
- fluxes are (hardcore-) bosons
- charges and fluxes are mutual semions
- composites are fermions

- charges are (hardcore-) bosons
- fluxes are (hardcore-) bosons
- charges and fluxes are mutual semions
- composites are fermions

- charges are (hardcore-) bosons
- fluxes are (hardcore-) bosons
- charges and fluxes are mutual semions
- composites are fermions

- charges are (hardcore-) bosons
- fluxes are (hardcore-) bosons
- charges and fluxes are mutual semions
- composites are fermions

- charges are (hardcore-) bosons
- fluxes are (hardcore-) bosons
- charges and fluxes are mutual semions
- composites are fermions

measuring non-local fluxes

- idea: measure total flux through several plaquettes
- corresponding operator W_{p1,...,pn} defined analogously to B_p

• e.g.
$$W_{p_1,p_2} = B_{p_1}B_{p_2}$$

- $\Rightarrow \text{ for contractible loops:} \\ W_{p_1,...,p_n} = \prod_{i \in \{1,...,n\}} B_{p_i}$
 - analogous for chargesanalogous for composites

no non-contractible loop \Rightarrow unique ground state

measuring non-local fluxes

- idea: measure total flux through several plaquettes
- corresponding operator W_{p1,...,pn} defined analogously to B_p

• e.g.
$$W_{p_1,p_2} = B_{p_1}B_{p_2}$$

- $\Rightarrow \text{ for contractible loops:} \\ W_{p_1,...,p_n} = \prod_{i \in \{1,...,n\}} B_{p_i}$
 - analogous for chargesanalogous for composites

no non-contractible loop \Rightarrow unique ground state

Topology and global operators

measuring global fluxes/charges on the torus

- non-contractible loops C_i
- operators W_i are not product of A_s , B_p
- $[W_i, H_{TC}] = 0$ \Rightarrow new good quantum numbers
- but only two of them as $[W_1, W_3] \neq 0 \neq [W_2, W_4]$

choose e.g.

- W_1, W_2 as quantum numbers
- W₃, W₄ as "raising/lowering" operators

Topology and global operators

interpretation of global operators

interpretation

- W_1/W_2 measure charge/flux through one hole of the torus
- W_3/W_4 transport charge/flux through this hole

Summary Example 1

so far:

- point-like anyons in 2D
- toric code as example for a gauge theory
- excitations can be pictured as endpoints of (tensionless) string
- string formalism allows to capture non-local features
- topology gives rise to e.g. non-trivial ground-state degeneracy

Blackboard pictures missing!