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Disclaimer

This talk is not about...

experimental realizations

 e.g. Benoit Estienne’s/Nicolas
Regnault’s/Steven Simon’s talk

symmetry-protected topological order
(⇒ no topological insulators)

edge-mode physics

... but ...

about topological quantum order

dealing with fine-tuned models

considering bulk properties

is a pedestrian approach to topological order

Be aware of (over-) simplifications!
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Introduction

Topological order

Some characteristic features

Gapped phases

Ground-state degeneracy depends on topology of the system

Ground states not distinguishable by local operators
⇒ no local order parameter
⇒ robustness of topological phases

 Kai Schmidt’s talk

Long-range entanglement

 Frank Pollmann’s talk

Elementary gapped excitations are so-called anyons

e.g. gapped spin liquids

 Frederic Mila’s talk
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Introduction

Outline

1 Introduction

2 Example 1: the toric code

3 Topology and global operators
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Introduction

Anyons
ti
m
e

|Ψ〉 R |Ψ〉 R2 |Ψ〉

R |Ψ〉 = + |Ψ〉 ⇒ bosons
R |Ψ〉 = − |Ψ〉 ⇒ fermions

3D

R2 = 1

Leinaas, Myrheim, Il Nuovo Cim. B 37 1 (1977)
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Introduction

Anyons
ti
m
e

|Ψ〉 R |Ψ〉 R2 |Ψ〉

R |Ψ〉 = e iθ |Ψ〉 ⇒ anyons (Abelian)
R |Ψ〉 = U |Ψ〉 ⇒ anyons (non−Abelian)

2D

R2 6= 1

Leinaas, Myrheim, Il Nuovo Cim. B 37 1 (1977)
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Example 1: the toric code

the toric code

the (Z2−) toric code A. Kitaev, Ann. Phys. 303, 2 (2003)

the “Ising model” of topological order

exactly solvable

ground state topologically ordered

realizes the same phase as e.g.

Z2 loop gas
quantum dimer model on Kagomé-lattice
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Example 1: the toric code

the toric code

(aka Z2 gauge theory in (2 + 1)D)

Lattice

Defined (here) on a square lattice

Microscopic degrees of freedom:

located on the links
spin- 12 : |↑〉, |↓〉.
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Example 1: the toric code

the toric code

The Hamiltonian

HTC = −J
∑

vertices s

As − J
∑

plaquettes p

Bp

As =
∏
i∈s
σzi

eigenvalues are ±1

+1: even number of |↓〉
−1: odd number of |↓〉

⇒ charge at vertex s
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Example 1: the toric code

the toric code

The Hamiltonian

HTC = −J
∑

vertices s

As − J
∑

plaquettes p

Bp

Bp =
∏
i∈p

σxi

eigenvalues are ±1

+1: e.g. |�〉+ |�〉
−1: e.g. |�〉 − |�〉

⇒ flux at plaquette p
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Example 1: the toric code

the toric code

Operator properties

[As ,As′ ] = 0

[
Bp,Bp′

]
= 0[

As ,Bp

]
= 0

⇒ [As ,HTC ] = [Bp,HTC ] = 0

⇒ eigenvalues of As ’s and Bp’s are conserved quantities
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Example 1: the toric code

ground state(s)

As ’s and Bp’s not only commuting but also frustration free
⇒ minimize each term separately

−JAs

minimized for even number
of |↓〉 at vertex s

⇒ ground state(s) formed by
closed loop configurations

−JBp

induce local fluctuations of
loop configurations

⇒ ground state(s) formed by
superposition of loops

|gs〉 ∝
∏
p

1 + Bp

2

∏
s

1 + As

2
|ref〉

∝

∣∣∣∣∣
〉

+

∣∣∣∣∣
〉

+

∣∣∣∣∣
〉

+

∣∣∣∣∣
〉

loop gas without string tension
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Example 1: the toric code

excitations

charge-excitations

σxi
1+As

2 = 1−As
2 σxi

⇒ string of σxi creates charges
at its endpoints

X |gs〉 =

flux-excitations

σzi
1+Bp

2 =
1−Bp

2 σzi
⇒ string of σzi creates fluxes at

its endpoints

Z |gs〉 =

composite-excitations

endpoints of open X ,
Z -string yield charge-flux
composite

⇒ open strings entering region
defining particle type

XZ |gs〉 =

Marc D. SCHULZ (UMN) Anyons & Topological Phases 11 / 16



Example 1: the toric code

exchange-statistics

charges are (hardcore-) bosons

fluxes are (hardcore-) bosons

charges and fluxes are mutual semions

composites are fermions
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Topology and global operators

measuring non-local fluxes

idea: measure total flux through several
plaquettes

corresponding operator Wp1,...,pn defined
analogously to Bp

e.g. Wp1,p2 = Bp1Bp2

⇒ for contractible loops:
Wp1,...,pn =

∏
i∈{1,...,n}

Bpi

analogous for charges

analogous for composites

no non-contractible loop
⇒ unique ground state

Marc D. SCHULZ (UMN) Anyons & Topological Phases 13 / 16



Topology and global operators

measuring non-local fluxes

idea: measure total flux through several
plaquettes

corresponding operator Wp1,...,pn defined
analogously to Bp

e.g. Wp1,p2 = Bp1Bp2

⇒ for contractible loops:
Wp1,...,pn =

∏
i∈{1,...,n}

Bpi

analogous for charges

analogous for composites

no non-contractible loop
⇒ unique ground state

Marc D. SCHULZ (UMN) Anyons & Topological Phases 13 / 16



Topology and global operators

measuring global fluxes/charges on the torus

non-contractible loops Ci
operators Wi are not product of As , Bp

[Wi ,HTC ] = 0
⇒ new good quantum numbers

but only two of them as
[W1,W3] 6= 0 6= [W2,W4]

choose e.g.

W1,W2 as quantum numbers

W3,W4 as “raising/lowering” operators

Marc D. SCHULZ (UMN) Anyons & Topological Phases 14 / 16



Topology and global operators

interpretation of global operators

interpretation

W1/W2 measure charge/flux
through one hole of the torus

W3/W4 transport charge/flux
through this hole

Topology ↔ non-contractible loops
↔ non-trivial string operators

per excitation
↔ ground-state degeneracy
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Topology and global operators

Summary Example 1

so far:

point-like anyons in 2D

toric code as example for a gauge theory

excitations can be pictured as endpoints
of (tensionless) string

string formalism allows to capture
non-local features

topology gives rise to e.g. non-trivial
ground-state degeneracy
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Topology and global operators

Notice:

Blackboard pictures missing!

Marc D. SCHULZ (UMN) Anyons & Topological Phases 17 / 16


	Introduction
	Example 1: the toric code
	Topology and global operators

