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Disclaimer

This talk is not about...

@ experimental realizations

@ symmetry-protected topological order
(= no topological insulators)

@ edge-mode physics
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Disclaimer

This talk is not about...

@ experimental realizations

@ symmetry-protected topological order
(= no topological insulators)

@ edge-mode physics

. but ...
about topological quantum order
dealing with fine-tuned models

o
o
@ considering bulk properties
°

is a pedestrian approach to topological order
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Disclaimer

This talk is not about...

@ experimental realizations

@ symmetry-protected topological order
(= no topological insulators)

@ edge-mode physics

. but ...
about topological quantum order
dealing with fine-tuned models

o
o
@ considering bulk properties
°

is a pedestrian approach to topological order

Be aware of (over-) simplifications! ]

Marc D. SCHULZ (UMN) Anyons & Topological Phases



Introduction
Topological order

Some characteristic features

o Gapped phases

@ Ground-state degeneracy depends on topology of the system

@ Ground states not distinguishable by local operators
= no local order parameter
= robustness of topological phases

Long-range entanglement

Elementary gapped excitations are so-called anyons
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= no local order parameter
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Introduction
Anyons

o= -G

RZ |W
W) R V) 5 V)

X

time

R~ W) = + |W) = bosons
R~ |V) = — |¥) = fermions

Leinaas, Myrheim, Il Nuovo Cim. B 37 1 (1977)
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Example 1: the toric code

the toric code

the (Zg—) toric code A. Kitaev, Ann. Phys. 303, 2 (2003)
o the “Ising model” of topological order
@ exactly solvable

@ ground state topologically ordered
@ realizes the same phase as e.g.

e Z, loop gas
e quantum dimer model on Kagomé-lattice
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Example 1: the toric code
the toric code

(aka Zy gauge theory in (24 1)D)

o Defined (here) on a square lattice
@ Microscopic degrees of freedom:
o located on the links

e spin-3: 1), [4).
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Example 1: the toric code
the toric code

(aka Zy gauge theory in (2 + 1)D)

@ Defined (here) on a square lattice
@ Microscopic degrees of freedom:
o located on the links

o spin-1: [1), |1).
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Example 1: the toric code

the toric code

The Hamiltonian

Hre=-J > A —J > B

vertices s plaquettes p

o A;=[]o7
i€s
@ eigenvalues are +1
e +1: even number of |])
o —1: odd number of ||)
= charge at vertex s
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Example 1: the toric code
the toric code

The Hamiltonian

Hre=-J > A —J > B

vertices s plaquettes p

° By =[] o7
iep
@ eigenvalues are +1
o +1: eg. |O) + |O)
o —1:eg |O)—|O)
= flux at plaquette p
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Example 1: the toric code

the toric code

Operator properties

o [As,As] =0

= eigenvalues of As's and B,'s are conserved quantities J
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Example 1: the toric code
the toric code

Operator properties

o [As,As] =0
o [Bp,By] =0
° [AS, Bp] =0

= [AS7 HTC] - [Bp7 HTC] - 0

= eigenvalues of As's and B,'s are conserved quantities J
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Example 1: the toric code

ground state(s)

As's and Bp's not only commuting but also frustration free
= minimize each term separately
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Example 1: the toric code

ground state(s)

As's and B,'s not only commuting but also frustration free
= minimize each term separately

@ minimized for even number 1+ B 14+ A
of |]) at vertex s |gs) o H 5 £ H 5 > |ref)
P s

= ground state(s) formed by
closed loop configurations

@ induce local fluctuations of
loop configurations

| T~ —

= ground state(s) formed by
superposition of loops
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Example 1: the toric code

ground state(s)

As's and B,'s not only commuting but also frustration free
= minimize each term separately

@ minimized for even number 1+ B 14+ A
of |]) at vertex s |gs) o H 5 £ H 5 > |ref)
P s

= ground state(s) formed by
closed loop configurations

@ induce local fluctuations of
loop configurations

| T~ —

= ground state(s) formed by

superposition of loops loop gas without string tension |
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Example 1: the toric code

excitations

charge-excitations flux-excitations

x1+As _ 1—As x 214B, _ 1-B, ,
®0; 5 ="5"0; Oi—2 = 2 i
= string of o creates charges = string of o7 creates fluxes at
at its endpoints its endpoints

Xlgs) = —+ Zlgs) = 1T+

v
composite-excitations

@ endpoints of open X,
Z-string yield charge-flux i
composite XZ |gs) = '_+¢
= open strings entering region
defining particle type
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Example 1: the toric code

exchange-statistics

@ charges are (hardcore-) bosons
o fluxes are (hardcore-) bosons
@ charges and fluxes are mutual semions

@ composites are fermions
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Example 1: the toric code

exchange-statistics

@ charges are (hardcore-) bosons
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Topology and global operators
measuring non-local fluxes

@ idea: measure total flux through several
plaquettes

@ corresponding operator W), ., defined
analogously to B,

°eg Wpp=8B,B,
= for contractible loops:

Wpl,-..,Pn = H B i o
ie{1,...,n}

no non-contractible loop
@ analogous for charges = unique ground state

@ analogous for composites
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Topology and global operators
measuring global fluxes/charges on the torus

non-contractible loops C;

operators W; are not product of As, B,
[VViaHTC]:O Cl Cz
= new good quantum numbers

but only two of them as G,
[Wi, W3] # 0 # [Wa, Wy

E o

choose e.g.

o Wi, W, as quantum numbers

o W3, Wiy as "raising/lowering” operators

o’
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Topology and global operators
interpretation of global operators

interpretation

e W;i/W, measure charge/flux
through one hole of the torus

o W3/W, transport charge/flux
through this hole

Topology <> non-contractible loops
<> non-trivial string operators
per excitation
<> ground-state degeneracy
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Topology and global operators
Summary Example 1

so far:

@ point-like anyons in 2D

@ toric code as example for a gauge theory

@ excitations can be pictured as endpoints
of (tensionless) string

@ string formalism allows to capture
non-local features

@ topology gives rise to e.g. non-trivial
ground-state degeneracy
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Topology and global operators

Notice:

Blackboard pictures missing! J
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