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The quantum Hall effect  
Two lectures: rough plan

- Competing instabilities
- Which FQH analogues to expect, when and why?

Higher Chern numbers
- Various constructions and why only some host FCIs

- Topology + frustration: novel FCIs in surface bands of Weyl semi-metals 

- Experiments?

} Topics of 
todays 
lecture

}- Crash course on integer and fractional effects

- Why look for alternative realizations?

Integer Chern insulators    ~ lattice quantum Hall systems at zero field

- Example lattice models

- General properties, comparison with continuum Landau levels

- Experiments!

Fractional Chern insulators
- Brief comments on challenge and methods

Done!

- Relation to FQH states (adiabatic continuity, entanglement spectra, edge states, etc.)
Skipped, 
ask me if 
interested...



 Fractional Chern insulators
Continued
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Useful references: 

S. A. Parameswaran, R. Roy & S. L. Sondhi
Fractional Quantum Hall Physics in Topological Flat Bands
C. R. Physique 14, 816 (2013) [arXiv:1302.6606]

E. J. Bergholtz & Z. Liu
Topological Flat Band Models and Fractional Chern Insulators
Int. J. Mod. Phys. B 27, 1330017 (2013) [arXiv:1308.0343]

http://arxiv.org/find/cond-mat/1/au:+Parameswaran_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Parameswaran_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Roy_R/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Roy_R/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sondhi_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sondhi_S/0/1/0/all/0/1
http://arxiv.org/abs/1302.6606
http://arxiv.org/abs/1302.6606
http://arxiv.org/find/cond-mat/1/au:+Bergholtz_E/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bergholtz_E/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Liu_Z/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Liu_Z/0/1/0/all/0/1
http://arxiv.org/abs/1308.0343
http://arxiv.org/abs/1308.0343


Recap: the problem

Extremely hard, non-perturbative problem with no generically applicable cure.

GS and low energy excitations?

? exp # states

Interactions projected to a flat band with non-zero Chern number

Empty state

Filled state

- complicated by the (unavoidable) algebraic tails of the Wannier functions



Early numerical evidence for FCIs in flat C=1 bands 
Laughlin-like states well established             

Evidence from numerical 
diagonalization: gaps, 
topological degeneracies, 
spectral flow, particle 
entanglement spectra etc. 
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Figure 3. (Color online) (a)-(c) Numerical evidence for a Fractional Chern insulator state at ⌫ = 2/5. For details see main text. (d)-(f)
Numerical evidence for a Fractional Chern insulator state at ⌫ = 1/5. Here we focus on t2 = 1/2 which is close to the value where the
variance of the Berry curvature is minimal.

ductance. In Fig. 3(b) we display the finite size scaling of the
energy spread of the five states in the ground state manifold
for different samples. We plot the energy splitting as a func-
tion of the inverse topological diameter 1/W (as defined in the
supplementary material [37]), which can become quite small
(as small as 1/25) for our tilted samples. Note that the topo-
logical extent is not in general equivalent to the geometrical
extent. In particular the samples with W = 10, 20, 25 have
a geometrical aspect ratio equal to one. We also stress that
the five ground states are systematically found in the sectors
predicted by the counting rule developed in Refs. [5, 9], and
which we generalized for tilted samples [37]. In the case of
tilted samples the ground state sectors show a great variabil-
ity depending on the cluster geometry, which is an argument
against the formation of a charge density wave state, which
should exhibit a unique set of degenerate momenta dictated
by the spatial symmetry breaking of the charge density wave.
Finally, in Fig. 3(c) we show the finite size scaling of the gap
from the ground state to the first excited state as a function
of inverse systems size 1/Ns. Our data shows non-negligible
finite size effects, but convincingly points towards a finite ex-
citation gap of the order of V/30 in the thermodynamic limit,
in contrast to recent claims denying a stable ⌫ = 2/5 state for
the checkerboard lattice [16, 19].

Next we turn to fractions below ⌫ = 1/3. According to
the pseudopotential analogy our nearest neighbor interactions
generate a finite V3, albeit roughly a factor ten smaller than

V1. We would thus expect to find a stable ⌫ = 1/5 state
with associated energy scales significantly smaller than those
of the ⌫ = 1/3 state. Indeed we find strong evidence for a
⌫ = 1/5 FCI state as shown in Fig. 3(d)-(f). In particular the
finite size effects of the ground state manifold splitting shown
in Fig. 3(e) behave qualitatively similar to the ⌫ = 2/5 case
in Fig. 3(b), and the energy gap to excited states extrapolates
very nicely to a value of the order of V/200. We furthermore
find some mild evidence for a ⌫ = 2/7 state [37], which is
stabilized by V3.

Effect of the single hole energy. — When numerically ex-
ploring the phase diagram we discovered that several particle
hole conjugate states of stable low-density FCI fractions do
not seem to be realized, for example we find it difficult to sys-
tematically observe the required ground state degeneracy for
⌫ = 2/3, while for ⌫ = 5/7 and ⌫ = 4/5 the required de-
generacy is absent. An enlightening way to understand this
finding is to monitor the filling dependence of the momentum
space occupation number n(k) = hc†kcki when plotted as a
function of the single hole energy Eh(k) introduced before,
see Fig. 4(a), where the occupancy n(k) in the incompress-
ible many-body state clearly tracks Eh(k). The role of the
interaction-induced effective single particle dispersion is thus
to significantly distort the momentum space occupancy as the
filling increases, and ultimately leads to Fermi-surface like
compressible states which are governed by the effective sin-
gle particle dispersion. This behavior is illustrated in Fig. 4(b)
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Figure 3. (Color online) (a)-(c) Numerical evidence for a Fractional Chern insulator state at ⌫ = 2/5. For details see main text. (d)-(f)
Numerical evidence for a Fractional Chern insulator state at ⌫ = 1/5. Here we focus on t2 = 1/2 which is close to the value where the
variance of the Berry curvature is minimal.

ductance. In Fig. 3(b) we display the finite size scaling of the
energy spread of the five states in the ground state manifold
for different samples. We plot the energy splitting as a func-
tion of the inverse topological diameter 1/W (as defined in the
supplementary material [37]), which can become quite small
(as small as 1/25) for our tilted samples. Note that the topo-
logical extent is not in general equivalent to the geometrical
extent. In particular the samples with W = 10, 20, 25 have
a geometrical aspect ratio equal to one. We also stress that
the five ground states are systematically found in the sectors
predicted by the counting rule developed in Refs. [5, 9], and
which we generalized for tilted samples [37]. In the case of
tilted samples the ground state sectors show a great variabil-
ity depending on the cluster geometry, which is an argument
against the formation of a charge density wave state, which
should exhibit a unique set of degenerate momenta dictated
by the spatial symmetry breaking of the charge density wave.
Finally, in Fig. 3(c) we show the finite size scaling of the gap
from the ground state to the first excited state as a function
of inverse systems size 1/Ns. Our data shows non-negligible
finite size effects, but convincingly points towards a finite ex-
citation gap of the order of V/30 in the thermodynamic limit,
in contrast to recent claims denying a stable ⌫ = 2/5 state for
the checkerboard lattice [16, 19].

Next we turn to fractions below ⌫ = 1/3. According to
the pseudopotential analogy our nearest neighbor interactions
generate a finite V3, albeit roughly a factor ten smaller than

V1. We would thus expect to find a stable ⌫ = 1/5 state
with associated energy scales significantly smaller than those
of the ⌫ = 1/3 state. Indeed we find strong evidence for a
⌫ = 1/5 FCI state as shown in Fig. 3(d)-(f). In particular the
finite size effects of the ground state manifold splitting shown
in Fig. 3(e) behave qualitatively similar to the ⌫ = 2/5 case
in Fig. 3(b), and the energy gap to excited states extrapolates
very nicely to a value of the order of V/200. We furthermore
find some mild evidence for a ⌫ = 2/7 state [37], which is
stabilized by V3.

Effect of the single hole energy. — When numerically ex-
ploring the phase diagram we discovered that several particle
hole conjugate states of stable low-density FCI fractions do
not seem to be realized, for example we find it difficult to sys-
tematically observe the required ground state degeneracy for
⌫ = 2/3, while for ⌫ = 5/7 and ⌫ = 4/5 the required de-
generacy is absent. An enlightening way to understand this
finding is to monitor the filling dependence of the momentum
space occupation number n(k) = hc†kcki when plotted as a
function of the single hole energy Eh(k) introduced before,
see Fig. 4(a), where the occupancy n(k) in the incompress-
ible many-body state clearly tracks Eh(k). The role of the
interaction-induced effective single particle dispersion is thus
to significantly distort the momentum space occupancy as the
filling increases, and ultimately leads to Fermi-surface like
compressible states which are governed by the effective sin-
gle particle dispersion. This behavior is illustrated in Fig. 4(b)

Later: orbital entanglement, 
adiabatic continuation, edge 
states, modular matrices,...

Non-abelian states (Moore-
Read, Read-Rezayi) are found 
(for multi-particle interactions)

Some hierarchy / composite fermion states

See arXiv:1308.0343 for 
original references...

http://arxiv.org/abs/1308.0343
http://arxiv.org/abs/1308.0343


Are flat C=1 bands identical to Landau levels?

No, there is a “memory” of the underlying lattice, hence less “universal” physics.

- Generally no nice (analytic) wave functions

 =
Y

i<j

(zi � zj)
3e�

P
i |zi|

2/4

(Kapit-Mueller is a striking exception)

The Berry curvature is not completely flat in models with a finite number of 
bands.

- In the continuum there are infinitely many Landau bands and 
the Berry curvature is constant

Aj(k) = �ihnk|@kj |nki, Fij = @kiAj(k)� @kjAi(k)

C =
1

2⇡

Z

BZ
F12(k)d

2k = 1

Quantized

Sensitive to details, 
never uniform

Exception: certain small finite size 
systems at peculiar filling fractions

T. Scaffidi and S. Simon  
arXiv:1407.1321

- May cause deviations from Landau level physics
- Reminiscent of a spatially varying magnetic field

Less symmetry -- no translation invariance (in reciprocal space)
See e.g. T.S. Jackson, G. 
Möller & R. Roy, arXiv:
1408.0843



Why just some states and what about their relative 
stability?

- But there are typically no nice wave functions in the Chern bands. What to do?
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SUPPLEMENTARY MATERIAL

Rank of the two-particle problem projected to a Chern band

Quite generally, for each K, the number of non-zero
energy levels is bounded above by the number of finite
energy levels of the interaction alone before band pro-
jection. This follows from the fact that each (unpro-
jected) interaction term imposes one (linear) constraint which
needs to be satisfied for the two particle wavefunction
| Ki =

P
q ↵

K
q [�K+q(r1)��q(r2) � �K+q(r2)��q(r1)] to

have zero energy: h K|V (r1, r2)| Ki = 0. If these con-
straints are linearly dependent, there can be additional zero-
energy states, as is the case at K = (0, 0) in the present exam-
ple. Here, the upper bound of 4 finite eigenvalues is saturated
everywhere else in the Brillouin zone. Including also a next-
nearest neighbor repulsion leads to 8 finite eigenvalues, and
e.g. on a three-sublattice kagome lattice model [1] one finds 6
(12) levels including the (up to next-)nearest neighbor terms.

Pseudopotentials and the two-particle problem in a Landau level

The Hamiltonian of describing any translation invariant
two-body interaction in a Landau level can be written in terms
of Haldane’s pseudopotentials. This technology is most com-
monly known in systems with rotational invariance where one
can write

H =
X

i<j

1X

m=0

VmPm(Mij),

where Pm(Mij) projects onto a state where particles i, j have
relative angular momentum m and the Vm’s are the pseu-
dopotential parameters, which are real numbers determined
by the specific interaction. More generally, one can define
pseudopotentials in any geometry by considering the short-
distance properties of the many-particle wave functions. In
this way one arrives at a useful expression in any geometry
including the torus relevant for our discussion:

H =
X

i<j

1X

m=0

VmLm(�r2
i )�(ri � rj).

From a given real-space interaction, V (r), one finds

Vm =

Z 1

0
qṼ (q)Lm(q2)e�q2

dq,

where Ṽ (q) is the Fourier transform of V (r) and Lm are the
Laguerre polynomials; L0(q2) = 1, L1(q2) = 1 � q2, . . ..

We now specify the discussion to the problem of two
particles interacting in in the lowest Landau level. The
two-particle wave functions are of the form  (z1, z2) =
FCM(z1 +z2)frel(z1 �z2) where we omit an exponential fac-
tor which is dependent on the specific geometry and gauge.
Once FCM(z1 + z2) is specified, the vanishing properties of
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Figure 5. (Color online) Geometry of a N
s

= 20 site cluster with
the spanning vectors T1 and T2, its momentum space point and an
illustration of the topological extent. The shaded grey momentum
points correspond to the expected ground state momenta for ⌫ = 1/5
state derived by the counting rule for a 10⇥ 2 lattice.

frel(z1 � z2) as z1 � z2 ! 0 uniquely specifies  (z1, z2) due
to the analytic structure of the lowest Landau level. In particu-
lar, the behavior f

(q)
rel (z1�z2) ⇠ (z1�z2)q , gives a natural and

complete set of two-particle wave functions for q = 1, 3, 5, . . .
commensurate with the boundary conditions. For instance, on
a L1 ⇥ L2 torus with complex structure ⌧ = iL2/L1, the rel-
evant choice is f

(q)
rel (z1 � z2) = #1((z1 � z2)/L1|⌧)q , where

#1(z|⌧) is the odd elliptic Jacobi theta function. It follows that
these wave-functions are indeed eigenstates of H with energy
eigenvalue E = Vq (finite size corrections occur if L1 or L2

is small). This gives the spectrum of the two-particle problem
and the multiplicity of each energy level is given by counting
the number of linearly independent center of mass functions
FCM(z1 + z2). This also shows that one may indeed extract
the pseudopotential parameters corresponding to a given in-
teraction by numerically diagonalize the problem of two parti-
cles interacting within the Landau level. We remark, however,
that some care is needed when considering interactions, such
as Coulomb, that need regularization on the torus. Depend-
ing on the precise regularization procedure, an Ns-dependent
constant may have to be be added in these cases to ensure that
Vm ! 0 as m ! 0 which is a physical constraint on interac-
tions that decay to zero as |r| ! 1.

To make direct contact with the two particle problem in the
Chern band we need to consider the multiplicities of the eigen-
values of the two particle problem. In the quantum Hall case,
each the eigenvalues are non-degenerate if all quantum num-
bers are fixed. However, while there are 2Ns sectors in the
Landau level problem (assuming that Ns is even), there are
only Ns distinct sectors in the Chern band. Thus the analogy
we wish to make requires two nearly degenerate eigenvalues
in each sector of the Chern band problem, which is indeed
what we observe.

Tilted Square samples

We use rectangular and tilted samples in our exact diago-
nalization study. The samples are defined by their spanning
vectors T1 and T2, which define the toroidal periodic bound-
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the pseudopotential parameters corresponding to a given in-
teraction by numerically diagonalize the problem of two parti-
cles interacting within the Landau level. We remark, however,
that some care is needed when considering interactions, such
as Coulomb, that need regularization on the torus. Depend-
ing on the precise regularization procedure, an Ns-dependent
constant may have to be be added in these cases to ensure that
Vm ! 0 as m ! 0 which is a physical constraint on interac-
tions that decay to zero as |r| ! 1.

To make direct contact with the two particle problem in the
Chern band we need to consider the multiplicities of the eigen-
values of the two particle problem. In the quantum Hall case,
each the eigenvalues are non-degenerate if all quantum num-
bers are fixed. However, while there are 2Ns sectors in the
Landau level problem (assuming that Ns is even), there are
only Ns distinct sectors in the Chern band. Thus the analogy
we wish to make requires two nearly degenerate eigenvalues
in each sector of the Chern band problem, which is indeed
what we observe.

Tilted Square samples

We use rectangular and tilted samples in our exact diago-
nalization study. The samples are defined by their spanning
vectors T1 and T2, which define the toroidal periodic bound-
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SUPPLEMENTARY MATERIAL

Rank of the two-particle problem projected to a Chern band

Quite generally, for each K, the number of non-zero
energy levels is bounded above by the number of finite
energy levels of the interaction alone before band pro-
jection. This follows from the fact that each (unpro-
jected) interaction term imposes one (linear) constraint which
needs to be satisfied for the two particle wavefunction
| Ki =

P
q ↵

K
q [�K+q(r1)��q(r2) � �K+q(r2)��q(r1)] to

have zero energy: h K|V (r1, r2)| Ki = 0. If these con-
straints are linearly dependent, there can be additional zero-
energy states, as is the case at K = (0, 0) in the present exam-
ple. Here, the upper bound of 4 finite eigenvalues is saturated
everywhere else in the Brillouin zone. Including also a next-
nearest neighbor repulsion leads to 8 finite eigenvalues, and
e.g. on a three-sublattice kagome lattice model [1] one finds 6
(12) levels including the (up to next-)nearest neighbor terms.

Pseudopotentials and the two-particle problem in a Landau level

The Hamiltonian of describing any translation invariant
two-body interaction in a Landau level can be written in terms
of Haldane’s pseudopotentials. This technology is most com-
monly known in systems with rotational invariance where one
can write

H =
X

i<j

1X

m=0

VmPm(Mij),

where Pm(Mij) projects onto a state where particles i, j have
relative angular momentum m and the Vm’s are the pseu-
dopotential parameters, which are real numbers determined
by the specific interaction. More generally, one can define
pseudopotentials in any geometry by considering the short-
distance properties of the many-particle wave functions. In
this way one arrives at a useful expression in any geometry
including the torus relevant for our discussion:

H =
X

i<j

1X

m=0

VmLm(�r2
i )�(ri � rj).

From a given real-space interaction, V (r), one finds

Vm =

Z 1

0
qṼ (q)Lm(q2)e�q2

dq,

where Ṽ (q) is the Fourier transform of V (r) and Lm are the
Laguerre polynomials; L0(q2) = 1, L1(q2) = 1 � q2, . . ..

We now specify the discussion to the problem of two
particles interacting in in the lowest Landau level. The
two-particle wave functions are of the form  (z1, z2) =
FCM(z1 +z2)frel(z1 �z2) where we omit an exponential fac-
tor which is dependent on the specific geometry and gauge.
Once FCM(z1 + z2) is specified, the vanishing properties of
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Figure 5. (Color online) Geometry of a N
s

= 20 site cluster with
the spanning vectors T1 and T2, its momentum space point and an
illustration of the topological extent. The shaded grey momentum
points correspond to the expected ground state momenta for ⌫ = 1/5
state derived by the counting rule for a 10⇥ 2 lattice.

frel(z1 � z2) as z1 � z2 ! 0 uniquely specifies  (z1, z2) due
to the analytic structure of the lowest Landau level. In particu-
lar, the behavior f

(q)
rel (z1�z2) ⇠ (z1�z2)q , gives a natural and

complete set of two-particle wave functions for q = 1, 3, 5, . . .
commensurate with the boundary conditions. For instance, on
a L1 ⇥ L2 torus with complex structure ⌧ = iL2/L1, the rel-
evant choice is f

(q)
rel (z1 � z2) = #1((z1 � z2)/L1|⌧)q , where

#1(z|⌧) is the odd elliptic Jacobi theta function. It follows that
these wave-functions are indeed eigenstates of H with energy
eigenvalue E = Vq (finite size corrections occur if L1 or L2

is small). This gives the spectrum of the two-particle problem
and the multiplicity of each energy level is given by counting
the number of linearly independent center of mass functions
FCM(z1 + z2). This also shows that one may indeed extract
the pseudopotential parameters corresponding to a given in-
teraction by numerically diagonalize the problem of two parti-
cles interacting within the Landau level. We remark, however,
that some care is needed when considering interactions, such
as Coulomb, that need regularization on the torus. Depend-
ing on the precise regularization procedure, an Ns-dependent
constant may have to be be added in these cases to ensure that
Vm ! 0 as m ! 0 which is a physical constraint on interac-
tions that decay to zero as |r| ! 1.

To make direct contact with the two particle problem in the
Chern band we need to consider the multiplicities of the eigen-
values of the two particle problem. In the quantum Hall case,
each the eigenvalues are non-degenerate if all quantum num-
bers are fixed. However, while there are 2Ns sectors in the
Landau level problem (assuming that Ns is even), there are
only Ns distinct sectors in the Chern band. Thus the analogy
we wish to make requires two nearly degenerate eigenvalues
in each sector of the Chern band problem, which is indeed
what we observe.

Tilted Square samples

We use rectangular and tilted samples in our exact diago-
nalization study. The samples are defined by their spanning
vectors T1 and T2, which define the toroidal periodic bound-
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- Extremely useful in Landau levels

f (q)
rel (z1 � z2) = #1((z1 � z2)/L1|⌧)q ⇠ (z1 � z2)

q

VmInsight: the pseudopotential parameters,      , can also be extracted from 
the spectrum of two interacting particles in a Landau level

- Can be directly generalized to the Chern band case

- Given the pseudopotential parameters we essentialy know the phase diagram

A.M. Läuchli, Z. Liu, E.J. Bergholtz 
and R. Moessner, PRL, 111, 126802 (2013)

Simple!Hard!

Efficient diagnostic



Pseudopotential analogy
Example of two-particles interacting within the Chern band:

Hint =
X

hi,ji

ninj projected to the flat C=1 band.
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- For a Checkerboard model this gives 4 finite energy 
levels per CM momenta (on kagome it gives 6 etc)

- FQH analogy suggests 2 energy levels per 
pseudopotential (due to the lower number of CM 
sectors in the Chern band)

⇠ V1

⇠ V3

V3V1

- We find FCI phases at filling
⌫ = 1/3, 2/5, 3/7, 4/9, 5/9, 4/7, 3/5

Stabilized by 
⌫ = 1/5, 2/7

Stabilized by 

Numerics essentially agree with 
pseudopotential predictions 

Often efficient as a diagnostic for a given flat band model 

A.M. Läuchli, Z. Liu, E.J. Bergholtz 
and R. Moessner, PRL, 111, 126802 (2013)



Example: “engineering” of 
complex FCIs

Choose a good workhorse: the Kapit-Mueller model

Z. Liu, E.J. Bergholtz 
and Eliot Kapit, 
PRB 88, 205101 (2013)

4

Figure 4. (Color online) Edge excitation spectrum from ED in the
K1 approximation at ⌫ = 1/2 (two-body on-site interactions) and
⌫ = 1 (three-body onsite interactions). (a) Nb = 8 on 5 ⇥ 5
Ruby lattice with vl = 0.01. (b) Nb = 8 on 5 ⇥ 5 Ruby lat-
tice with v0p = 0.0006. (c) Nb = 8 on 5 ⇥ 5 Kagome lattice
with v0p = 0.001. We observe the U(1) counting of low-energy
excitations {1, 1, 2, 3, 5, 7, ...} at �K = {0, 1, 2, 3, 4, 5, ...} in all
three cases. (d) Nb = 10 on 5 ⇥ 3 Ruby lattice with v0p =
0.0002. We observe the U(1)⇥Ising counting of low-energy exci-
tations {1, 1, 3, 5, 10, 16, ...} at �K = {0, 1, 2, 3, 4, 5, ...}.

systems which we study using DMRG, see Fig. 3(c,d).
Edge excitation spectrum. The open boundaries on finite

cylinders provide a natural setting for the studies of edge ex-
citations which appear in the vicinity of real physical edges.
In our numerical approach we keep N2 fixed and increase
N cyl

1 adding extra WQ orbitals, then open the edge on one
side to allow occupation of these states while keeping the
edge on the other side closed. In order to observe a stable
edge excitation spectrum, we consider various confining po-
tentials that extend from the bulk to the extra WQ orbitals.
For not too strong potentials, a branch of low-energy exci-
tations separated from higher levels appears in the spectrum
for both filling fractions ⌫ = 1/2 and ⌫ = 1 as shown in
Fig. 4. For a linear confinement, vl

PNs�1
j=0 (2⇡j/L)â†j âj , the

spectrum accurately matches the prediction of Luttinger liq-
uid theory [6]: the dispersion is linear and the edge states in
each �K sector have nearly-degenerate energies [Fig. 4(a)].
This degeneracy can be split by a parabolic confinement,
v0p

PNs�1
j=0 (2⇡j/L)2â†j âj , which makes the excitation spec-

trum similar to the OES [Fig. 4(b-d)]. The number of edge
states in each �K sector does not depend on the form of the
confinement and matches exactly with the conformal field the-
ory prediction until the finite-size effects intervene at higher
energies. Similar results have recently been obtained for a re-
lated problem of FQH states on a lattice in uniform magnetic
field [56].

Discussion. In summary, we studied bosonic fractional
Chern insulators in the finite cylinder geometry using a combi-
nation of the exact diagonalisation and the momentum-space

DMRG. The ground-state OES at ⌫ = 1/2 has a strong over-
lap with the OES of the corresponding Laughlin state. The
ground-state OES at ⌫ = 1 shows that the FCI analogue
of the FQH Moore-Read state is likely to survive even with
two-body on-site interactions. The counting structure in the
ground-state orbital entanglement, and the edge excitation
spectrum, provide strong evidence for the bulk-edge corre-
spondence in FCIs. Our setup is likely to bring new insights
into intriguing and less understood FCI states which have no
direct QH counterparts, most notably the states which can ex-
ist in flat bands with higher Chern numbers [57–59].
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- Look for an interaction that 
mimics the desired pseudo-
potential spectra

Consider the two-particle 
problem (here bosons)

752 states below the gap

3-fold degeneracy for 6 and 10 bosons, but not for 8 and 12 bosons. Why?

Back to the many-body problem

- We find exotic non-abelian FCI states 
(Moore-Read and Read Rezayi) for 
reasonable two-body interactions!

4-fold topological degeneracy of the 
k=3 RR state (Fibonacci anyons)



Are there new competing instabilities in the 
lattice case? 

Lack of translation invariance in reciprocal space spoils particle-hole symmetry

H =
X

k1k2k3k4

Vk1k2k3k4c
†
k1
c†k2

ck3ck4 ,

!
X

k1k2k3k4

V ⇤
k1k2k3k4

c†k1
c†k2

ck3ck4 +
X

k

Eh(k)c
†
kck

ck ! c†k :

Particle-hole transformation generates a dispersive 
single-hole term
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Landau level)
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- Generically gives a non-constant n(k)

- Wins over the conventional two-body terms at 
high filling fractions!

Interaction-only induced gapless states

A.M. Läuchli, Z. Liu, E.J. Bergholtz 
and R. Moessner, PRL, 111, 126802 (2013)



Summary on fractional Chern insulators in C=1 
bands

) �E ⇠ 500K

Interaction scale set by lattice 
spacing                        !?

No need for strong magnetic fields

Huge potential:

(very optimistic estimate due to 
Tang, Mei & Wen, PRL ‘11)

FQH/FCI states survive despite strong lattice effects 

- Many interesting differences compared to the continuum, but 
fairly well understood problem by now

S. A. Parameswaran, R. Roy & S. L. Sondhi
Fractional Quantum Hall Physics in Topological Flat Bands
C. R. Physique 14, 816 (2013) [arXiv:1302.6606]

E. J. Bergholtz & Z. Liu
Topological Flat Band Models and Fractional Chern Insulators
Int. J. Mod. Phys. B 27, 1330017 (2013) [arXiv:1308.0343]

More details in 
the reviews:
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Higher Chern numbers
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Useful references: 

E.J. Bergholtz, Z. Liu, M. Trescher, R. Moessner & M. Udagawa
Topology and interactions in a frustrated slab: tuning from Weyl 
semi-metal to C>1 fractional Chern insulators
arXiv:1408.3669

M. Udagawa, & E. J. Bergholtz
Correlations and entanglement in flat band models with variable Chern numbers
arXiv:1407.0329

M. Barkeshli, X.-L. Qi 
Topological Nematic States and Non-Abelian Lattice Dislocations
Phys. Rev. X 2, 031013 (2012) 
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Flat C>1 bands
Can be constructed in many ways

- Longer-range hopping
- Larger unit-cells

Boundary conditions are important for topologically ordered states 
- related to the ground state degeneracy (Wen ’90, Haldane ’85)

- would correspond to a change topology 
and thereby the enhance the degeneracy
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tion number of the ith orbital associated with the Ith
layer. There are also intrinsically multilayer non-Abelian
states38,39,41,42. In the current paper we will focus on the
(mml) states, where m != l for incompressible states.

II. INTERPLAY WITH LATTICE
TRANSLATION SYMMETRY AND

DISLOCATIONS

A 2D lattice is invariant under two independent trans-
lation operations Tx and Ty. Their action on the Wannier
states defined in Eq. (2) and (6) is

Tx|W 1
K〉 = |W 2

K〉, Tx|W 2
K〉 = |W 1

K+2π〉,
Ty|W a

K〉 = eiK |W a
K〉. (8)

Thus Tx exchanges the two sets of Wannier states but Ty

does not.
Now consider the effect of dislocations53; these are

characterized by a Burgers vector b, which is defined
as the shift of the atom position when a reference point
is taken around a dislocation43. An x dislocation with
b = x̂ is illustrated in Fig. 2 A. Far away from a dis-
location, the lattice is locally identical to one without
a dislocation, so the dislocation is, as far as the struc-
ture of the lattice is concerned, a point defect. Now
consider a bilayer (mmn) state realized on the lattice
with a dislocation. As is shown in Eq. (8), the two
sets of Wannier states are related by translation in x di-
rection. Thus when one goes around an x-dislocation,
the two “layers” consisting of Wannier states

∣

∣W 1
K

〉

and
∣

∣W 2
K

〉

are exchanged. The map defined by the Wannier
states, which maps the C1 = 2 Chern insulator to a bi-
layer FQH system, maps the Chern insulator on a lattice
with a pair of dislocations to a bilayer FQH state defined
on a “Riemann surface” with a pair of branch-cuts, as
is illustrated in Fig. 2 B. This is the key observation
which indicates that the x-dislocations in this system
have nontrivial topological properties. By comparison,
the y-dislocations do not exchange the two layers and
thus do not correspond to a topology change in the ef-
fective bilayer description.

III. TOPOLOGICAL DEGENERACY OF
DISLOCATIONS

Although the (mml) quantum Hall state considered is
Abelian, the x-dislocation carries a nontrivial topological
degeneracy.54 To understand this, start from the simplest
case of (mm0) state, which is a direct product of two
Laughlin states. For such a state, the Chern insulator on
a torus is mapped to two decoupled tori with a Laugh-
lin 1/m state defined on each of them, with total ground
state degeneracy of m2. When a pair of x-dislocations
is introduced, the two tori are connected by the branch-
cut. If we do a reflection of the top layer according to

FIG. 2: A: Illustration of an x-dislocation. B: (Upper pan-
nel) Illustration that an x-dislocation leads to a branch cut
around which the two effective layers are exchanged. (Lower
pannel) A reflection of the top layer maps the branch cut be-
tween a pair of dislocations into a “worm hole” connecting
the two layers. C: A torus with two pairs of x-dislocations is
equivalent to two tori connected by two “worm holes”, which
is a genus 3 surface. This picture illustrates the fact that
dislocations carry nontrivial topological degeneracy.

the x axis, the branch cut becomes a “worm hole” be-
tween the two layers, as is illustrated in Fig. 2 B. Thus
the two tori are connected, resulting in a genus 2 sur-
face. For two pairs of dislocations, the two layers are
connected by two worm holes and the whole system is
topologically equivalent to a single Laughlin 1/m state
on a genus 3 surface, as is shown in Fig. 2 C. Thus the
ground state degeneracy becomes m3. In general, when
there are 2n x-dislocations on the lattice, the space is
effectively a genus n+1 surface and the ground state de-
generacy for n > 0 is mn+1. It follows that the average
degree of freedom carried by each dislocation–known as
the quantum dimension–is d =

√
m. Thus we can see

that the x-dislocation carries a nontrivial topological de-
generacy, in the same way as a non-Abelian topological
quasiparticle.

The discussion above can be generalized: for the (mml)
state, n > 0 pairs of dislocations on a torus leads to the
topological degeneracy of |m2− l2||m− l|n−1, so that the
quantum dimension of each dislocation is d =

√

|m− l|
(recall m != l for incompressible FQH states). For l != 0,
the system cannot be mapped to a Laughlin state on
high genus surface as the two layers are not decoupled31.
The topological degeneracy can be computed from the
bulk Chern-Simons effective theory31. In the following we
provide an alternative understanding of the topological
degeneracy using the edge states, as it is more rigorous
for l != 0, and it helps to provide a clearer understanding
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Figure 11. (Color online) (Color online) The orbital entanglement
spectra (OES) of exact bosonic Moore-Read states (blue diamond)
and the projected nearly-degenerate state | J1

prj (�)i (red cross) at ⌫ =

1, Nb = 12. | J1
prj (�)i is in J1 = 2 sector and corresponds to the

Moore-Read state in K1 = 6 sector. The lattice size is N1 ⇥ N2 =
3⇥ 4 and �1 = 0.8 for the FCI part. (a): � = 0.5. The unprojected
| J1(�)i has weight W ⇡ 0.95860 on K1 = 6 sector. The overlap
with the Moore-Read state O = |h K1=6

MR | J1=2(�)i|2 is 0.93707.
(b): � = 1. The unprojected | J1(�)i has weight W ⇡ 0.89528
on K1 = 6 sector. The overlap with the Moore-Read state O =
|h K1=6

MR | J1=2(�)i|2 is 0.83976. The orange shadows indicate the
generic levels in the OES of | J1

prj (�)i which deviate from the levels
of the exact Moore-Read state.
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Dislocations as non-Abelian 
“wormholes” aka “genons”!?

Non-trivial boundary conditions could hence  
lead to qualitatively new phenomena.
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Example, 
Dirac model:

- Multi-layer and long-range interpretation a matter of taste (think of a square lattice)
- Somewhat trivial, but...

Correlations and entanglement in flat band models with variable Chern numbers 4

hopping range.

2.1. An instructive two band model

We start with the Hamiltonian

H =
∑

k

c†kαH(k)αβckβ, (1)

where

H(k) = (sin kx)σx + (sin ky)σy + (m + cos kx + cos ky)σz (2)

is defined on a square lattice with Nx × Ny sites and the Pauli matrices, σi, define an

internal degree of freedom at each lattice point [52]. The band structure of this model

is composed of two bands, and the Chern number C of the lower band can be classified

[53], according to the value of m, as

C =






1 for 0 < m < 2

−1 for − 2 < m < 0

0 otherwise

(3)

We set m = 1 throughout this paper, which will ensure that we stick to the topologically

non-trivial regime. By introducing d-vector,





dx(k) = sin kx

dy(k) = sin ky

dz(k) = m + cos kx + cos ky

(4)

the Bloch Hamiltonian (2) can be conveniently written as

H(k) = d(k) · σ. (5)

The d vector representation directly leads to a geometrical expression for the Chern

number:

C =
1

4π

∫
dkx

∫
dky d̂ ·

( ∂d̂

∂kx
× ∂d̂

∂ky

)
, (6)

where d̂ ≡ d(k)/|d(k)| is the unit length vector parallel to d(k). By regarding d̂ as

the mapping from Brioullion zone (BZ) to the sphere surface d̂ : [0, 2π) × [0, 2π) → S2,

the Chern number C acquires the geometrical meaning: C represents the wrapping

number of this mapping. According to (3), the d-vector chosen as (4) wraps the

sphere only one time for 0 < m < 2, while k = (kx, ky) sweeps the BZ. The integrand

B(k) ≡ d̂·
(

∂d̂
∂kx

× ∂d̂
∂ky

)
is the Berry curvature which can be interpreted as a magnetic field

in reciprocal space. Physically, the Chern number corresponds to the number of current

carrying chiral edge states, which directly gives the quantized transverse conductivity

σxy = C e2

h for a filled, hence bulk insulating, band carrying Chern number C [54, 55, 56].

In order to generate a two-band model with arbitrary Chern number from

Hamiltonian (5), let us first introduce polar coordinate and express d-vector (4) as
(
dx(k), dy(k), dz(k)

)
= |d(k)|

(
sin θk cos φk, sin θk sin φk, cos θk

)
(7)
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localization and translation symmetry. In this context, it
would be particularly interesting to investigate the effects of
lattice dislocations [44, 52].
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A more “homogenous” example 

Change the wrapping of the sphere directly
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d(C)

FIG. 1: Illustration of the Berry’s phase curvature in a two-
band model. The Berry’s phase

H

C
A · dr around a path C in

the BZ is half of the solid angle subtended by the image path
d(C) on the sphere S2.

In a real space, this model can be expressed in tight-
binding form as

H =
∑

n

[

c†n
σz − iσx

2
cn+x̂ + c†n

σz − iσy

2
cn+ŷ + h.c.

]

+m
∑

n

c†nσzcn (14)

Physically, such a model describes the quantum anoma-
lous Hall effect realized with both strong spin-orbit cou-
pling (σx and σy terms) and ferromagnetic polarization
(σz term). Initially this model was introduced for its sim-
plicity in Ref. 35, however, recently, it was shown that it
can be physically realized in Hg1−xMnxTe/Cd1−xMnxTe
quantum wells with a proper amount of Mn spin
polarization38.

C. Dimensional reduction

To see how topological effects of 1+1 dimensional insu-
lators can be derived from the first Chern number and the
QH effect through the procedure of dimensional reduc-
tion, we start by studying the QH system on a cylinder.
An essential consequence of the nontrivial topology in the
QH system is the existence of chiral edge states. For the
simplest case with the first Chern number C1 = 1, there
is one branch of chiral fermions on each boundary. These
edge states can be solved for explicitly by diagonalizing
the Hamiltonian (14) in a cylindrical geometry. That is,
with periodic boundary conditions in the y-direction and
open boundary conditions in the x-direction, as shown in
Fig.2 (a). Note that with this choice ky is still a good
quantum number. By defining the partial Fourier trans-
formation

ckyα(x) =
1

√

Ly

∑

y

cα(x, y)eikyy,

FIG. 2: (a) Illustration of a square lattice with cylindrical
geometry and the chiral edge states on the boundary. The
definition of x and y axis are also shown by black arrows.
(b) One-d energy spectrum of the model in Eq. (12) with
m = −1.5. The red and black line stands for the left and
right moving edge states, respectively, while the blue lines are
bulk energy levels. (c) Illustration of the edge states evolution
for ky = 0 → 2π. The arrow shows the motion of end states
in the space of center-of-mass position versus energy. (d)
Polarization of the one-d system versus ky. (See text)

with (x, y) the coordinates of square lattice sites, the
Hamiltonian can be rewritten as

H =
∑

ky,x

[

c†ky
(x)

σz − iσx

2
cky(x + 1) + h.c.

]

+
∑

ky,x

c†ky
(x) [sin kyσy + (m + cos ky)σz ] cky (x)

≡
∑

ky

H1D(ky). (15)

In this way, the 2D system can be treated as Ly inde-
pendent 1D tight-binding chains, where Ly is the period
of the lattice in the y-direction. The eigenvalues of the
1D Hamiltonian H1D(ky) can be obtained numerically for
each ky , as shown in Fig. 2 (b). An important property
of the spectrum is the presence of edge states, which lie
in the bulk energy gap, and are spatially localized at the
two boundaries: x = 0, Lx. The chiral nature of the edge
states can be seen from their energy spectrum. From Fig.
2 (b) we can see that the velocity v = ∂E/∂k is always
positive for the left edge state and negative for the right
one. The QH effect can be easily understood in this edge
state picture by Laughlin’s gauge argument3. Consider
a constant electric field Ey in the y-direction, which can
be chosen as

Ay = −Eyt, Ax = 0.

Correlations and entanglement in flat band models with variable Chern numbers 4

hopping range.

2.1. An instructive two band model

We start with the Hamiltonian

H =
∑

k

c†kαH(k)αβckβ, (1)

where

H(k) = (sin kx)σx + (sin ky)σy + (m + cos kx + cos ky)σz (2)

is defined on a square lattice with Nx × Ny sites and the Pauli matrices, σi, define an

internal degree of freedom at each lattice point [52]. The band structure of this model

is composed of two bands, and the Chern number C of the lower band can be classified

[53], according to the value of m, as

C =






1 for 0 < m < 2

−1 for − 2 < m < 0

0 otherwise

(3)

We set m = 1 throughout this paper, which will ensure that we stick to the topologically

non-trivial regime. By introducing d-vector,





dx(k) = sin kx

dy(k) = sin ky

dz(k) = m + cos kx + cos ky

(4)

the Bloch Hamiltonian (2) can be conveniently written as

H(k) = d(k) · σ. (5)

The d vector representation directly leads to a geometrical expression for the Chern

number:

C =
1

4π

∫
dkx

∫
dky d̂ ·

( ∂d̂

∂kx
× ∂d̂

∂ky

)
, (6)

where d̂ ≡ d(k)/|d(k)| is the unit length vector parallel to d(k). By regarding d̂ as

the mapping from Brioullion zone (BZ) to the sphere surface d̂ : [0, 2π) × [0, 2π) → S2,

the Chern number C acquires the geometrical meaning: C represents the wrapping

number of this mapping. According to (3), the d-vector chosen as (4) wraps the

sphere only one time for 0 < m < 2, while k = (kx, ky) sweeps the BZ. The integrand

B(k) ≡ d̂·
(

∂d̂
∂kx

× ∂d̂
∂ky

)
is the Berry curvature which can be interpreted as a magnetic field

in reciprocal space. Physically, the Chern number corresponds to the number of current

carrying chiral edge states, which directly gives the quantized transverse conductivity

σxy = C e2

h for a filled, hence bulk insulating, band carrying Chern number C [54, 55, 56].

In order to generate a two-band model with arbitrary Chern number from

Hamiltonian (5), let us first introduce polar coordinate and express d-vector (4) as
(
dx(k), dy(k), dz(k)

)
= |d(k)|

(
sin θk cos φk, sin θk sin φk, cos θk

)
(7)
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Figure 1. The magnitude of transfer integrals, |t(r
j

)| is plotted for the system with
N

x

= N

y

= 100, for several C’s. The values of Chern number are C = (a) 1, (b) 2, (c)
3, (d) 4, (e) 5 and (f) 10.

introduces the limitation on the value of d
c

. From the observation of numerical results,

d

c

must be d

c

> C for Chern number C, as we will discuss later.

We note that the present model is not the shortest range model possible to create

a band with Chern number C. In fact, the even simpler modification of (5), in which

we make the replacement d(k) ! d(m
x

k

x

,m

y

k

y

) with any integer m
x

,m

y

gives a model

that has only hopping of range m

x

,m

y

in the x- and y-directions respectively, and that

has Chern number C. Of course, our model (10) is more ”realistic” and homogenous

in the sense that its real space representation (11) is dominated by short range terms.

Nevertheless, with the alternative construction we see that only a hopping range
p
C

in necessary for obtaining Chern number C in two-band models. However, if the size of

the unit cell is allowed to increase, only nearest neighbor hopping is needed [17]. The

most intuitive way of creating such models is to couple layers each carrying C = 1 bands

[17, 28]. Next we consider the energy dispersion of the large C model with a truncated

- Also gives C=N, but with more “homogenous” 
hopping

(with a flat band model as starting point)

Chern number lost if hopping truncated

- In this case hopping at distance d>C needed

d ⇠
p
C

- Generally, for fixed number of bands 
hopping with range                 needed  

ˆd(k) ! ˆd(N)
(k) =

⇣
sin ✓k cos(N�k), sin ✓k sin(N�k), cos ✓k

⌘



Two-particle problem 

Two-band Dirac model defined above for various Chern numbers 

M. Udagawa, & E. J. Bergholtz
arXiv:1407.0329

(otherwise fixed parameters)

C = 2 C = 10 C = 20
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By diagonalizing this Hamiltonian, one can obtain energies and eigenfunctions for each
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Figure 6. Two-body spectra for (a) C = 1, (b) C = 2, (c) C = 3, (d) C = 4,
(e) C = 10, (f) C = 15 and (g) C = 20 calculated for the system with system size,
Nx = Ny = 48. We set dc = 24. The spectra are obtained along the symmetry line
shown in (h).

In Fig. 6 we plot the eigenvalues along the representative high symmetry line

through the Brillouin zone, as shown in Fig. 6(h). Notably, the spectrum includes no
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In Fig. 6 we plot the eigenvalues along the representative high symmetry line

through the Brillouin zone, as shown in Fig. 6(h). Notably, the spectrum includes no

C = 1

Gives a rationale for why C>1 FCIs were hard to find initially

- We tried something else...

Quite smooth spectrum, 
somewhat separated spectra

Jagged spectrum, no clear 
separation of scales

http://arxiv.org/find/cond-mat/1/au:+Udagawa_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Udagawa_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bergholtz_E/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bergholtz_E/0/1/0/all/0/1
http://arxiv.org/abs/1407.0329
http://arxiv.org/abs/1407.0329


Flat C>1 bands from geometrical frustration: 
novel FCIs, Weyl semimetals and  Fermi arcs

1 + 1 ! 2 + 0?

We asked: Is it possible to make N 
C=1 bands hybridize so that one 
band absorbs all the topology (C=N) 
while the others become trivial 
(C=0)? 

We implement our idea on pyrochlore 
slabs inspired by pyrochlore based spin-
orbit coupled materials, e.g. iridates.

Flat bands with higher Chern number

Maximilian Trescher and Emil J. Bergholtz
Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik,

Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
(Dated: May 15, 2012)

A large number of recent work points to the emergence of intriguing analogues of fractional quantum Hall
states in lattice models due to effective interactions in nearly flat bands with Chern number C = 1. Here,
we provide an intuitive and efficient construction of almost dispersionless bands with higher Chern numbers.
Inspired by the physics of quantum Hall multilayers and pyrochlore based transition metal oxides, we study a
tight-binding model describing spin-orbit coupled electrons in N parallel kagome layers connected by apical
sites forming N � 1 intermediate triangular layers (as in the pyrochlore lattice). For each N , we find finite
regions in parameter space giving a virtually flat band with C = N . We analytically express the states within
these topological bands in terms of single layer states and thereby explicitly demonstrate that the C = N wave
functions have an appealing structure in which layer index and translations in reciprocal space are intricately
entangled. This provides a promising arena for new collective states of matter.

PACS numbers: 73.43.Cd, 71.10.Fd, 73.21.Ac

Introduction.— Topological insulators, predicted theoreti-
cally [1] a few years ago and subsequently experimentally
observed [2], have attracted enormous amounts of interest.
As these systems can be usually be understood in a single-
particle picture, an intriguing question is if interactions can
lead to qualitative new phenomena. Evidence that this is in-
deed the case has been accumulating during the past year. In
a key step it was shown that e.g. an appropriate combination
of ferromagnetism and spin-orbit coupling can lead to nearly
flat bands with unit Chern number, C = 1, in itinerant lattice
systems [3–5]. Given the flat bands, these systems are likely
to host interesting strongly correlated states and, at least in
theory, this opens up a number of intriguing perspectives in-
cluding high-temperature fractional quantum Hall states [3].
Indeed, numerical exact diagonalization studies convincingly
show the existence of such states [6–12]. While the list of flat
band models with C = 1 is still growing [13–17], and a better
understanding of the relation between these bands and Landau
levels [9, 12, 18–21] is developing, bands with higher Chern
number could host qualitatively new phases of matter [22] as
they have no direct analogue in the continuum [23]. In this
context, two very recent papers made interesting progress by
introducing models harboring relatively flat bands with C = 2

[24, 25].
At the same time there is a tremendous experimental de-

velopment and theoretical interest in the physics of transition
metal oxides, especially the iridates, where the effect of spin-
orbit coupling is profound [26, 27]. Among these materials
there are examples such as A2Ir2O7 (A is a rare earth element)
where the relevant effective low-energy degrees of freedom
are conducting 5d electrons on the Ir4+ ions that live on the
geometrically frustrated pyrochlore lattice formed by corner-
sharing tetrahedra [28–31]. Interestingly, an anomalous Hall
effect has been observed in the metallic pyrochlore [32].

Here, we connect these research directions and consider a
tight-binding model describing spin-orbit coupled electrons

t1, �1

t2, �2

t?
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A large number of recent work points to the emergence of exotic correlated states in lattice models due to
effective interactions in nearly flat bands with Chern number C = 1. Here, we provide an intuitive and efficient
construction of almost dispersionless bands with higher Chern numbers. Inspired by the physics of quantum
Hall bilayers and pyrochlore based transition metal oxides, we study a tight-binding model describing (Rashba)
spin-orbit coupled electrons in n parallel kagome layers connected by apical sites forming n � 1 intermediate
triangular layers. For n = 1, 2, 3 there are sizable regions in parameter space giving nearly flat bands with
C = n, and we conjecture that this will be true also for n > 3.
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Figure 1. (Color online) The kagome bilayer (a) and trilayer (b).

Introduction.— Topological insulators, predicted theoreti-
cally [1] a few years ago and subsequently experimentally ob-
served [2], have attracted enormous amounts of interest. As
these systems can be usually be understood in a single-particle
picture a most pressing question is if there are system in which
interactions lead to qualitative new phenomena. Evidence that
this is indeed the case has been accumulating during the past
year. As an initial step in this direction it was shown that
an appropriate combination of ferromagnetism and spin-orbit
coupling can lead to nearly flat bands with non-zero Chern
number in various itinerant lattice systems [3–5]. These sys-
tems are likely to host interesting strongly correlated states
and, at least in theory, open up a number of intriguing per-
spectives including high-temperature FQH states [3]. While
the list of flat band models with non-trivial topology is grow-
ing rapidly [15], and a better understanding of the relation
between flat band models in lattices and Landau levels [9–
11, 14] is developing, the actual existence of exotic correlated
states hinges crucially on the nature of the effective interac-
tions within a partially occupied band. The interacting prob-
lem in topological flat bands is in principle quite different to
that in a continuum Landau level and is as such subject to in-
tense research efforts. Notably, it has been established that a
strongly correlated incompressible state occurs at electronic
band filling ⌫ = 1/3 through numerical exact diagonalization
studies of small systems [6, 7]. Even more recently, it has
been demonstrated that non-abelian FQH states can in prin-
ciple be stabilized as ground states of local multi-body inter-
actions [11–13]. A common feature of all these states is that
they, in the continuum, appear as exact maximal density zero
modes of local, so-called pseudo-potential interactions [? ].
Analogously, the interactions leading to the correlated lattice
states found so-far closely mimic their respective pseudo po-
tentials being repulsive nearest neighbor interactions.

Setup.—

Figure 2. (Color online) The Berry curvature in the C = 2 band is
shown in (c).

Interactions.—
Discussion.— In this work, we have...
We acknowledge useful discussions with.... EJB is sup-

ported by the Alexander von Humboldt foundation.
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Figure 1. (Color online) The kagome bilayer (a) and trilayer (b).

Introduction.— Topological insulators, predicted theoreti-
cally [1] a few years ago and subsequently experimentally ob-
served [2], have attracted enormous amounts of interest. As
these systems can be usually be understood in a single-particle
picture a most pressing question is if there are system in which
interactions lead to qualitative new phenomena. Evidence that
this is indeed the case has been accumulating during the past
year. As an initial step in this direction it was shown that
an appropriate combination of ferromagnetism and spin-orbit
coupling can lead to nearly flat bands with non-zero Chern
number in various itinerant lattice systems [3–5]. These sys-
tems are likely to host interesting strongly correlated states
and, at least in theory, open up a number of intriguing per-
spectives including high-temperature FQH states [3]. While
the list of flat band models with non-trivial topology is grow-
ing rapidly [15], and a better understanding of the relation
between flat band models in lattices and Landau levels [9–
11, 14] is developing, the actual existence of exotic correlated
states hinges crucially on the nature of the effective interac-
tions within a partially occupied band. The interacting prob-
lem in topological flat bands is in principle quite different to
that in a continuum Landau level and is as such subject to in-
tense research efforts. Notably, it has been established that a
strongly correlated incompressible state occurs at electronic
band filling ⌫ = 1/3 through numerical exact diagonalization
studies of small systems [6, 7]. Even more recently, it has
been demonstrated that non-abelian FQH states can in prin-
ciple be stabilized as ground states of local multi-body inter-
actions [11–13]. A common feature of all these states is that
they, in the continuum, appear as exact maximal density zero
modes of local, so-called pseudo-potential interactions [? ].
Analogously, the interactions leading to the correlated lattice
states found so-far closely mimic their respective pseudo po-
tentials being repulsive nearest neighbor interactions.

Setup.—

Figure 2. (Color online) The Berry curvature in the C = 2 band is
shown in (c).

Interactions.—
Discussion.— In this work, we have...
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Introduction.— Topological insulators, predicted theoreti-
cally [1] a few years ago and subsequently experimentally ob-
served [2], have attracted enormous amounts of interest. As
these systems can be usually be understood in a single-particle
picture a most pressing question is if there are system in which
interactions lead to qualitative new phenomena. Evidence that
this is indeed the case has been accumulating during the past
year. As an initial step in this direction it was shown that
an appropriate combination of ferromagnetism and spin-orbit
coupling can lead to nearly flat bands with non-zero Chern
number in various itinerant lattice systems [3–5]. These sys-
tems are likely to host interesting strongly correlated states
and, at least in theory, open up a number of intriguing per-
spectives including high-temperature FQH states [3]. While
the list of flat band models with non-trivial topology is grow-
ing rapidly [15], and a better understanding of the relation
between flat band models in lattices and Landau levels [9–
11, 14] is developing, the actual existence of exotic correlated
states hinges crucially on the nature of the effective interac-
tions within a partially occupied band. The interacting prob-
lem in topological flat bands is in principle quite different to
that in a continuum Landau level and is as such subject to in-
tense research efforts. Notably, it has been established that a
strongly correlated incompressible state occurs at electronic
band filling ⌫ = 1/3 through numerical exact diagonalization
studies of small systems [6, 7]. Even more recently, it has
been demonstrated that non-abelian FQH states can in prin-
ciple be stabilized as ground states of local multi-body inter-
actions [11–13]. A common feature of all these states is that
they, in the continuum, appear as exact maximal density zero
modes of local, so-called pseudo-potential interactions [? ].
Analogously, the interactions leading to the correlated lattice
states found so-far closely mimic their respective pseudo po-
tentials being repulsive nearest neighbor interactions.

Setup.—

Figure 1. (Color online) The kagome bilayer (a) (b) and trilayer (c)
and (d) .

Figure 2. (Color online) The Berry curvature in the C = 2 band is
shown in (c).
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Interactions.—
Discussion.— In this work, we have...
We acknowledge useful discussions with.... EJB is sup-

ported by the Alexander von Humboldt foundation.
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Figure 1. (Color online) The kagome bilayer (a) and trilayer (b).
The layers are colored differently for clarity and the considered hop-
ping processes are indicated by arrows in (a). A 2D projection of the
trilayer is shown in (c) and illustrates the general structure of the py-
rochlore lattice: the projection has a three-fold periodicity (kagome
layer m + 3n has the same projection as layer m).

on a quasi-two-dimensional slab of pyrochlore including N
parallel kagome layers and N � 1 intermediate triangular lay-
ers (Fig. 1). Our main result is that this model accommodates
virtually flat bands carrying Chern number C = N , that are
well-separated from all other bands, even for relatively large
N ⇠ 10 (cf. Fig. 2), and as such, provides an intriguing new
platform for yet unexplored phases of matter.

Setup.— Our starting point is the following highly ideal-
ized model describing Rashba spin-orbit coupled electrons
on pyrochlore slabs including N kagome layers, Km, m =

1, . . . , N :

H =

X

i,j,�

tijc
†
i�cj� +i

X

i,j,↵,�

�ij(Eij ⇥ Rij)·�↵�c†
i↵cj� , (1)

t1,�1

t2,�2

t?

Note: no interlayer tunneling give N degenerate C=1 bands -- this is 
not what we wanted...

- Multilayer systems
- Geometrical frustration

...and answer: yes, using 

M. Trescher and E.J. Bergholtz,
Phys. Rev. B 86, 241111(R) (2012)



Results: 2d bulk dispersion

For N kagome layers we find a flat band with C=N!

M. Trescher and E.J. Bergholtz,
Phys. Rev. B 86, 241111(R) (2012)
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1d edge states: revealed in cylinder geometry

0 1 2 3 4 5 6
kx

�3.0

�2.5

�2.0

�1.5

�1.0

�0.5

E
(k

x
)

5 10 15 20 25 30
y (in unit cells)

0.0

0.2

0.4

0.6

0.8

1.0

P

Edge state low y at ⇡/2

Edge state high y at ⇡/2

Edge state low y at ⇡

Edge state high y at ⇡

Edge state low y at 3/2⇡

Edge state high y at 3/2⇡

Example: the C=2 band has 2 gapless chiral edge states at each end

(Microscopically different 
edges to avoid deceiving 
degeneracies)

y

x



Can qualitatively new FCI phases form 
within C>1 bands?

C = 2, ⌫b = 1/3 :

7

Figure 8. (Color online) (a) The PES for the ⌫ = 1/5, C = 4 bosonic FCI state in four-layer kagome system with Nb = 7, N1 = 7 and
N2 = 5 (2345 states below the gap). (b) The PES for the ⌫ = 1/4, C = 3 bosonic FCI state in three-layer kagome system with Nb = 7,
N1 = 4 and N2 = 7 (1 428 states below the gap). �1 = 0.9.

Evidence for the ⌫ = 1/3, C = 2 bosonic FCI states in bilayer kagome system

Bosonic ⌫ = 1/3 FCI states were very recently discovered in C = 2 band in a triangular lattice model [24]. We also observed
such states in our C = 2 bilayer kagome system model. The ground state degeneracy and spectral flow are shown in Fig. 9.

Figure 9. (Color online) Results for the ⌫ = 1/3, C = 2 bosonic FCI states in bilayer kagome system (�1 = 1) (a) The low-lying energy
spectrum for Nb = 4(N1 = 3, N2 = 4), Nb = 6(N1 = 3, N2 = 6) and Nb = 8(N1 = 4, N2 = 6). (b) The x-direction spectral flow for
Nb = 4(N1 = 3, N2 = 4).

Spectral flow, quasihole excitations and entanglement spectrum for ⌫ = 1/7, C = 3 fermionic FCI states with weakened interaction

To further confirm that the ground states are FCI states, we calculate the spectral flow, quasihole excitations and PES for
⌫ = 1/7 ground states with weakened interaction in the mid-layer. We consider an extreme case in which the interaction in the
mid-layer is completely eliminated (↵ = 1). In Fig. 10, one can find that the spectral flow, quasihole excitation spectra and PES
are qualitatively the same as those for ↵ = 0.

Data of the PES counting for various filling factors and system sizes

The particle entanglement spectrum (PES) is usually considered as a valuable tool to probe the excitation structure of the
system and rule out competing states [5]. For a system possessing a d-fold (quasi-)degenerate state {| ii}di=1, we define the
mixed density matrix of the system as ⇢ =

1
d

Pd
i=1 | iih i|. Then we cut the total particles into two parts A and B with NA

and NB particles, respectively. The reduced density matrix of part A can be obtained by tracing out the particles belonging to
part B, namely ⇢A = TrB⇢. We can label each eigenvalue of ⇢A as e�⇠, where ⇠ is just the PES level. As shown in some

⌫b = 1/(C + 1)Yes, we find convincing evidence for a series of  bosonic FCI states at

Z. Liu, E.J. Bergholtz, H. Fan, A. M. Läuchli 
Phys. Rev. Lett. 109, 186805 (2012)  

Different from standard multi-layer systems...

⌫f = 1/(2C + 1)Fermionic states at (likely absent at higher filling fractions!)

Strong evidence also for C>1 generalizations of 
non-Abelian FQH states found in this model!

E.J. Bergholtz, Z. Liu, M. 
Trescher, R. Moessner, and M. 
Udagawa, arXiv:1408.3669

A. Sterdyniak, C. Repellin, 
B.A. Bernevig, and N. 
Regnault, Phys. Rev. B 
87, 205137 (2013)



Can we analytically understand the C=N states?

21

H = t1
X

hi,ji

c†i cj

- Example: nearest neighbor hopping on a kagome lattice
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and let |ii, i = 1, . . . , n label the states in the unit cell. In reciprocal space, the single-
particle Hamiltonian (1) is represented by a Hermitian n⇥ n matrix, Hk, which is
diagonalized, Hk| s(k)i = Es(k)| s(k)i, by the states | s(k)i =

P
i a

s
i (k)|ii. The

eigenvalues Es(k), s = 1, . . . , n,k 2 BZ, constitute the band structure of the model.
To characterize the topological properties of a band it is useful to calculate the Chern
number, C = 1

2⇡

R
BZ F

s
12(k)d

2k, which is an integer valued quantity defined for an
isolated band described by the wave functions | s(k)i, via the Berry curvature,
F s
ij(k) = @kiA

s
j(k) � @kjA

s
i (k), which in turn is defined in terms of the Berry

connection As
j(k) = �ih s(k)|@kj | s(k)i. Physically, the Chern number counts the

number of current carrying chiral edge states, and as such gives the quantized Hall
conductivity of a filled band7, �H = C e2

h (and although counterexamples exist8,9,10,

it typically gives �H = C⌫ e2

h for an incompressible state at fractional band filling,
⌫).

Topologically non-trivial bands, with C 6= 0, can appear when the hopping
parameters, tij , are allowed to assume complex values which naturally arises in a
number of systems including spin-orbit coupled materials and systems with e↵ective
gauge fields.

To make the discussion concreted we will now focus on a three band model
describing Rashba spin-orbit coupled particlesa on the kagome lattice2.

Hk = t1

0

@
0 1 + eik1 1 + eik2

1 + e�ik1 0 1 + e�ik3

1 + e�ik2 1 + eik3 0

1

A

+ i�1

0

@
0 1 + eik1 �(1 + eik2)

�(1 + e�ik1) 0 1 + e�ik3

1 + e�ik2 �(1 + eik3) 0

1

A (2)

3. Interactions in C = 1 models and the FQH analogy

3.1. Numerically observed states

... A heuristic explaining the occurrence of these states was developed by Läuchli
et. al.25.

aThe e↵ective model only includes spin-polarized particles as can be achieved by a ferromagnetic
substrates or by applying a weak Zeeman field.

Bloch Hamiltonian:

Ek/t1

 “Graphene + a flat band”
Localized modes 
explain the flat band

Quick recap: Flat bands and localized modes on frustrated lattices

But these states are neither topological nor and not Wannier functions!
- Need a slightly refined concept...



The C>1 bands are 
surface bands!

Despite the non-locality of the Wannier functions, geometrical frustration provides 
an avenue to novel surface states
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When each kagome layer is a Chern insulator, these are precisely the states with 
Chern number C=N !

- Simple way of generating (flat) bands with any Chern number

r(k) = � �i
1(k) + �i

2(k) + �i
3(k)

e�ik2�i
1(k) + ei(k1�k2)�i

2(k) + �i
3(k)

2

t_\perp=0.5,1.0, 1.5, 2.0, 5.0

t_1=-1, t_2=-0.3, 
lambda_1=0.3, lambda_2=0.2, 
N=100 
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Figure 2. Weakly coupled Chern insulators vs. Weyl semi-metals.
As t? is increased there is a transition from a weakly-coupled regime
to a distinct phase where Weyl nodes occur on the line connecting �

and M . In the top left panel we show the phase diagram in the case
of nearest neighbor hopping only (we set t1 = �1 throughout) [36].
The other panels show example band structures with fixed �1 = 0.5
and varying t? = 1, 2, 3 for a slab with N = 300 kagome layers
along the crucial � � K � M � � path through the projected 2D
Brillouin zone (BZ) (cf. top right inset). Note that, remarkably, the
band highlighted in orange corresponding to the surface states (2), is
independent of t?.

ever, in thin slabs we find a plethora of possible fractionalized
phases, some of which were discovered earlier [33, 34] with
the implicit assumption of sub-critical inter-layer tunneling.
Most prominently, we provide evidence for a first non-Abelian
fermionic fractional Chern insulator (FCI) in a C > 1 band,
namely a C = 2 generalization of the Moore-Read quantum
Hall phase [35]. Our work thus gives a unifying and fresh
perspective on the intriguing combination of fractionalization
and topological surface localization impossible in strictly two-
dimensional systems.

Setup.— Our tight binding model on N kagome layers, Km,
alternating with N �1 triangular layers, Tm [30] (Fig. 1), con-
siders spinless, spin-orbit coupled, fermions with interlayer
hopping amplitude t? and kagome layer (next) nearest hop-
ping amplitudes t1 ± i�1 (t2 ± i�2), where the �(+) sign ap-
plies for (anti-)clockwise hopping w.r.t. the hexagon on which
it takes place. Time-reversal symmetry is absent, e.g. due to
an orbital field or spontaneous ferromagnetism.

Band structure and surface wave functions.— Indepen-
dently of the form of the Bloch states of a single kagome layer,
three bands of the N -layer system are exactly described by

| i
(k)i = N (k)

NX

m=1

⇣
r(k)

⌘m
|�i(k)im , (1)

where |�i(k)im, i = 1, 2, 3 are the single layer Bloch
states localized to Km and N (k) ensures proper normal-
ization. The coefficients r(k) are determined by demand-
ing that the amplitudes for hopping to the triangular lay-
ers vanish by interfering destructively (Fig. 1): r(k) =

� �i
1(k)+�i

2(k)+�i
3(k)

e�ik2�i
1(k)+ei(k1�k2)�i

2(k)+�i
3(k)

, where �in(k), n  3, are
the components of the Bloch spinor for the pertinent state

Figure 3. Surface state structure and Fermi arcs. The color scale
indicates the inverse penetration depth, ⇠�1

(k) = log(|r(k)|) of
the surface states throughout the 2D BZ for the same parameters,
t1 = �1,�1 = 0.5, used in Fig. 2. The black lines illustrate Fermi
arcs for a chemical potential set at the Weyl node for a few t?-values.
When ⇠�1

(k) changes sign, the localization changes between top
(red) to bottom (blue) surfaces, hence splitting the Fermi "circle"
into six spatially disjoint arcs.

|�i(k)i in a single kagome-layer, and k1,2 = k · a1,2. While
�in(k), n  3, can be analytically obtained by diagonalizing
3⇥ 3 Hermitian matrices, the full Bloch spinor is fully known
via  i

4m(k) = 0,  i
n+4(m�1)(k) = N (k)

�
r(k)

�m
�in(k) for

all k, n, m, with E(k) of the states (1) equal to those of the
single layer case.

Let us emphasize that, firstly, the states on the slab are ex-
ponentially localized to either the top or bottom layers, except
in high symmetry cases where |r(k)| = 1. And secondly,
if periodic boundary conditions are applied also in the [111]-
direction, there are no generic eigenstates of the form (1), un-
derscoring their surface nature.

In the following, we consider the case of single layer
kagome bands carrying non-zero Chern number [37, 38], say
C = 1. Then, the multilayer state (1) has Chern number N :

| C=N
(k)i = N (k)

NX

m=1

⇣
r(k)

⌘m
|�C=1

(k)im (2)

where |�C=1
(k)im is the state localized to Km. The states (2)

play a prominent role in this work, and their corresponding
energies are highlighted in bold orange throughout this work
(not shown are the two related states with C = 0, �N ).

Fig. 2 illustrates the finite t? transition between weakly
coupled Chern insulators and the Weyl semi-metal regime
with linear band touching points described by

HWeyl =

X

i

vi�iki + E0(k)I , (3)

where �i are Pauli matrices and I is the identity matrix. Pre-
cisely at the transition, the valence and conduction bands ex-
hibit a two-fold degenerate touching at the M -points, which
split into three pairs of (non-degenerate) Weyl cones that
travel towards the �-point where they meet as t? ! 1. Re-
markably, the states (2) are entirely independent of the value

Crucial insight: surface bands localized to the kagome layers only if the total 
hopping amplitude to the triangular layer vanish.

- Local constraint, destructive interference
- Unique solution, independent of details!
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We show that, quite generically, a [111] slab of spin-orbit coupled pyrochlore lattice exhibits surface states
whose constant energy curves take the shape of Fermi arcs, localized to different surfaces depending on their
quasi-momentum. Remarkably, these persist independently of the existence of Weyl points in the bulk. Consid-
ering interacting electrons in slabs of finite thickness, we find a plethora of known fractional Chern insulating
phases, to which we add the discovery of a new higher Chern number state which is likely a generalization of
the Moore-Read fermionic fractional quantum Hall state. By contrast, in the three-dimensional limit, we argue
for the absence of gapped states of the flat surface band due to a topologically protected coupling of the surface
to gapless states in the bulk. We comment on generalizations as well as experimental perspectives in thin slabs
of pyrochlore iridates.

PACS numbers: 73.43.Cd, 71.10.Fd, 73.21.Ac

Introduction.— The prediction [1–5] and subsequent ex-
perimental observation [6, 7] of topological insulators has
fundamentally revolutionized the understanding of electronic
states of matter during the past decade [8–10]. New fron-
tiers in this field include gapless topological phases such as
three-dimensional Weyl semi-metals [11–15] exhibiting ex-
otic Fermi arc surface states [13, 15–17], interaction effects
on the gapless surface of topological insulators [18–22], and
strongly correlated phases akin to fractional quantum Hall
states in two-dimensional (2D) lattices (see Refs. [23, 24]
and references therein). Drawing additional inspiration from
the rapid development of growth techniques in fabricating
high quality slabs/films/interfaces of oxide materials [25], this
work provides intriguing connections between these seem-
ingly disparate frontiers.

The materials pursuit for Weyl semi-metals and its rel-
atives is rapidly broadening [26–29], with spin-orbit cou-
pled pyrochlore iridates, such as Y2Ir2O7 [13, 30–32] being
particularly promising compounds—as these are favourably
grown/cleaved in the [111] direction, and given their pre-
dicted rich variety of strongly correlated phases [33, 34], we
here study the surface bands of pyrochlore [111] slabs, where
the system can be seen as a layered structure of alternating
kagome and triangular layers [30] (Fig. 1).

Our work uncovers an intriguing dichotomy between bulk
and surface states which allows us to establish connec-
tions between apparently disparate topological phenomena.
While the bulk band structure changes drastically as a func-
tion of the inter-layer tunneling strength t?—including the
(dis)appearance of the Weyl semi-metal—the surface states,
which involve only the kagome layers, remain unchanged on
account of their essentially geometrical origin. Most saliently,
in the two distinct regimes of N weakly coupled kagome lay-
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Figure 1. The pyrochlore slab. The left panel shows the [111] py-
rochlore slab with N = 4 kagome layers (blue) separated by (yel-
low) sites of N � 1 = 3 triangular layers. A practical labeling of the
4N � 1 = 15 sites in the unit cell and the basis vectors, a1,a2, of
the Bravais lattice are also indicated. The top right panel indicates the
considered nearest neighbor processes. The lower right panel shows
the local environment of a triangular (yellow) site for which the lo-
cal constraint of destructive interference directly leads to the surface
states (1) at the heart of this work.

ers, each with unit Chern number, at small t?, and the gen-
uinely three-dimensional Weyl semi-metal at large t?, identi-
cal surface states carrying Chern number C = N are localized
at opposite surfaces depending on their momentum. Constant
energy contours in reciprocal space are Fermi arcs, which thus
exist also in absence of Weyl nodes in the bulk!

Upon adding interactions to a partially filled surface band—
even when these are made very flat by tuning hopping
parameters—we argue that interactions do not open a gap
for thick slabs, due to a leakage into the bulk along "soft"
lines related to projections of remnant Weyl nodes. How-

components of the single layer Bloch spinor

- Unique solution, independent of details!

|r(k)|
- Inherits the dispersion of the single layer model
- Localized to top or bottom layer, depending on 



What’s the nature of the 
surface states?
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Upper panel: N=100 and t_2=-0.3, -0.1, 0.1, 0.3 (left to right)

t_1=-1, t_p=2, lambda_1=0.3, lambda_2=0.2

Lower panel: t_2=0.3 and N=30, 10, 5, 3 (left to right)

t2 = �0.3 t2 = �0.1
t2 = 0.1 t2 = 0.3

N = 30 N = 10 N = 5 N = 3

Wednesday, July 23, 14

Figure 4. From Weyl nodes to flat surface bands. For t1 = �1,�1 = 0.3,�2 = 0.2, t? = 2.0, we plot the energy dispersion for various N
and t2 on the path ��K �M � � through the BZ. In the upper panel we set the number of kagome layers to N = 100 while varying t2 to
illustrate bulk behavior. For t2 = �0.3 (leftmost) there is a clear Weyl node on the line connecting M and �. For t2 = �0.1, 0.1 the node is
skewed and at t2 = 0.3 it is essentially flat in one direction (rightmost plot). Notably, in this case there is one band (bold orange) that remains
at almost fixed energy throughout the entire BZ. In the lower panel we fix t2 = 0.3 and reduce the number of layers, N = 30, 10, 5, 3, from
left to right. A sizable finite size gap quickly opens throughout the entire BZ, while the band marked orange remains very flat. In each case
band highlighted in bold orange is that of (2), carrying Chern number N .

ing points described by

HWeyl =

X

i

vi�iki + E0(k)I , (3)

where �i are Pauli and I is the identity matrix. Precisely at the
transition, the valence and conduction bands exhibit two-fold
degenerate touching at the M -points, which split into three
pairs of (non-degenerate) Weyl cones that travel towards the
�-point where they meet as t? ! 1. Remarkably, the states
(2) are entirely independent of the value of t?; in each case
they describe states localized to the surfaces perpendicular
to the [111] cleavage/cut/growth direction, while at the same
time their interpretation funamentally changes. Note also that
the dispersion of the states (2) always traverse the Weyl point.

At fixed chemical potential, which may be fixed at the Weyl
node due to stoichiometric considerations, the states (2) pre-
cisely describe Fermi arcs. In Fig. 3 we illustrate the mo-
mentum dependence of the surface localization of the states
(2). Most saliently, we find that the penetration depth diverges
along the lines connecting � and M . Crossing these lines,
the localization changes between the bottom and top surfaces,
which is the hallmark behavior of Fermi arcs. More specifi-
cally, a typical Fermi "circle" splits into six Fermi arcs which
switch between top and bottom surface six times, whenever
the Fermi circle crosses a �-M -line (cf. Fig. 3).

In Fig. 4 we go on to show how the state (2) can smoothly
be transformed into a band which is essentially dispersionless,
yet being tightly attached to bulk bands. It important to note
that also the latter regime is described by a Weyl Hamiltonian
(3) with a suitable choice of E0(k); the essential point is that
the topology is unchanged as long as the band touching is lin-
ear (vi 6= 0, i = 1, 2, 3), no matter how skewed the Weyl point

is due to the overall constant dispersion E0(k). In fact, the
Weyl nodes carry a quantized Chern flux and can as such only
be annihilated by merging with an opposite chirality partner
[15]. Furthermore, considering a quasi-two-dimensional slab,
one finds that there is a fairly sizable region in which the band-
width is (much) smaller than the band gap, although to obtain
very flat surface bands we need to include also next-nearest
neighbor hopping (as done in Fig. 4).

Thus, one can consider the flat bands of Refs. [26, 31, 32]
vestiges of Weyl semi-metal surface bands. While t? con-
sidered in those works is slightly below the Weyl semi-metal
regime, our exact solution (2) reveals that this distinction is
in fact immaterial in thin slabs as long as only the topological
band is concerned, see below.

Projected interactions in the flat band limit.– We now add
interactions to a partially filled surface band with C = N ;
for Weyl semi-metals with the chemical potential pinned to
the Weyl node in the bulk by stoichiometry, this may well be
relevant to the low-energy physics of quasi-2d slabs.

The matrix elements of any local interaction (provided it is
uniform throughout the lattice and does not couple different
kagome layers) follows from (2); for a two-body interaction,

V C=N
k1k2k3k4

=V C=1
k1k2k3k4

⇣ |r(k1)|2 � 1

|r(k1)|2N� 1

· · · |r(k4)|2 � 1

|r(k4)|2N� 1

⌘1
2

⇥ (r⇤
(k1)r

⇤
(k2)r(k3)r(k4))

N � 1

r⇤
(k1)r⇤

(k2)r(k3)r(k4) � 1

(4)

where the band projected interaction Hamiltonian in general
can be written as

Hint =

X

k1k2k3k4

V C=N
k1k2k3k4

c†
k1

c†
k2

ck3ck4 , (5)

- Nb. this holds in each case, also when the touching cone is nearly flat!

E.J. Bergholtz, Z. Liu, M. 
Trescher, R. Moessner, 
and M. Udagawa,      
arXiv:1408.3669

Another look at the 
bulk spectrum...



Works generically

Phase diagram (more complicated 
for very strong spin-orbit coupling)
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The topology is manifested through exotic surface states, “Fermi arcs”

Topological gapless phase in three dimensions
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Upper panel: N=100 and t_2=-0.3, -0.1, 0.1, 0.3 (left to right)

t_1=-1, t_p=2, lambda_1=0.3, lambda_2=0.2

Lower panel: t_2=0.3 and N=30, 10, 5, 3 (left to right)
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Figure 4. From Weyl nodes to flat surface bands. For t1 = �1,�1 = 0.3,�2 = 0.2, t? = 2.0, we plot the energy dispersion for various N
and t2 on the path ��K �M � � through the BZ. In the upper panel we set the number of kagome layers to N = 100 while varying t2 to
illustrate bulk behavior. For t2 = �0.3 (leftmost) there is a clear Weyl node on the line connecting M and �. For t2 = �0.1, 0.1 the node is
skewed and at t2 = 0.3 it is essentially flat in one direction (rightmost plot). Notably, in this case there is one band (bold orange) that remains
at almost fixed energy throughout the entire BZ. In the lower panel we fix t2 = 0.3 and reduce the number of layers, N = 30, 10, 5, 3, from
left to right. A sizable finite size gap quickly opens throughout the entire BZ, while the band marked orange remains very flat. In each case
band highlighted in bold orange is that of (2), carrying Chern number N .

ing points described by

HWeyl =

X

i

vi�iki + E0(k)I , (3)

where �i are Pauli and I is the identity matrix. Precisely at the
transition, the valence and conduction bands exhibit two-fold
degenerate touching at the M -points, which split into three
pairs of (non-degenerate) Weyl cones that travel towards the
�-point where they meet as t? ! 1. Remarkably, the states
(2) are entirely independent of the value of t?; in each case
they describe states localized to the surfaces perpendicular
to the [111] cleavage/cut/growth direction, while at the same
time their interpretation funamentally changes. Note also that
the dispersion of the states (2) always traverse the Weyl point.

At fixed chemical potential, which may be fixed at the Weyl
node due to stoichiometric considerations, the states (2) pre-
cisely describe Fermi arcs. In Fig. 3 we illustrate the mo-
mentum dependence of the surface localization of the states
(2). Most saliently, we find that the penetration depth diverges
along the lines connecting � and M . Crossing these lines,
the localization changes between the bottom and top surfaces,
which is the hallmark behavior of Fermi arcs. More specifi-
cally, a typical Fermi "circle" splits into six Fermi arcs which
switch between top and bottom surface six times, whenever
the Fermi circle crosses a �-M -line (cf. Fig. 3).

In Fig. 4 we go on to show how the state (2) can smoothly
be transformed into a band which is essentially dispersionless,
yet being tightly attached to bulk bands. It important to note
that also the latter regime is described by a Weyl Hamiltonian
(3) with a suitable choice of E0(k); the essential point is that
the topology is unchanged as long as the band touching is lin-
ear (vi 6= 0, i = 1, 2, 3), no matter how skewed the Weyl point

is due to the overall constant dispersion E0(k). In fact, the
Weyl nodes carry a quantized Chern flux and can as such only
be annihilated by merging with an opposite chirality partner
[15]. Furthermore, considering a quasi-two-dimensional slab,
one finds that there is a fairly sizable region in which the band-
width is (much) smaller than the band gap, although to obtain
very flat surface bands we need to include also next-nearest
neighbor hopping (as done in Fig. 4).

Thus, one can consider the flat bands of Refs. [26, 31, 32]
vestiges of Weyl semi-metal surface bands. While t? con-
sidered in those works is slightly below the Weyl semi-metal
regime, our exact solution (2) reveals that this distinction is
in fact immaterial in thin slabs as long as only the topological
band is concerned, see below.

Projected interactions in the flat band limit.– We now add
interactions to a partially filled surface band with C = N ;
for Weyl semi-metals with the chemical potential pinned to
the Weyl node in the bulk by stoichiometry, this may well be
relevant to the low-energy physics of quasi-2d slabs.

The matrix elements of any local interaction (provided it is
uniform throughout the lattice and does not couple different
kagome layers) follows from (2); for a two-body interaction,

V C=N
k1k2k3k4

=V C=1
k1k2k3k4

⇣ |r(k1)|2 � 1

|r(k1)|2N� 1

· · · |r(k4)|2 � 1

|r(k4)|2N� 1

⌘1
2

⇥ (r⇤
(k1)r

⇤
(k2)r(k3)r(k4))

N � 1

r⇤
(k1)r⇤

(k2)r(k3)r(k4) � 1

(4)

where the band projected interaction Hamiltonian in general
can be written as

Hint =

X

k1k2k3k4

V C=N
k1k2k3k4

c†
k1

c†
k2

ck3ck4 , (5)

- stable touching points, protected by a Chern number

Alternative layer prescription for WSMs exist
- details and ingredients are however very different

Predicted in pyrochlore iridates X. Wan, A. M. Turner, A. 
Vishwanath, and S. Y. Savrasov, 
Phys. Rev. B 83, 205101 (2011).

A. A. Burkov and L. Balents,, Phys. 
Rev. Lett. 107, 127205 (2011).

- half a gapless Dirac theory

Subject to intense experimental (and theoretical) activity
- no ideal realization yet, but similar “Dirac metals” with symmetry protected Weyl features 
found recently
- many new ideas and and engineered structures materials are being tested...

- many fascinating transport phenomena, e.g., the chiral anomaly

Reviews:

A.M. Turner and A. Vishwanath, 
Beyond Band Insulators: Topology 
of Semi-metals and Interacting 
Phases, arXiv:1301.0330 

P. Hosur and X. Qi, Recent 
developments in transport 
phenomena in Weyl semimetals, 
arXiv:1309:4464



Fermi arcs in the pyrochlore slab
Constant energy lines, “Fermi circles”, are split into Fermi arcs!

localized to 
top layer

localized to 
bottom layer

delocalized

Here we have an exact solutions for the Fermi arcs, and seen as a family, 
they carry a huge Chern number.
The Fermi arcs also exist in absence of Weyl nodes in the bulk!

E.J. Bergholtz, Z. Liu, M. 
Trescher, R. Moessner, 
and M. Udagawa,      
arXiv:1408.3669

t? = 2

Projections of the 
Weyl points for 

(chemical potential 
at the Weyl point)



Experiments?
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Oxide interfaces & geometrically frustrated 
systems with strong spin-orbit coupling
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- Might, mutatis mutandis, realize the pyrochlore  
slab model and the C=N bands

N=3N=2

Perovskite materials, ABO3, routinely grown in 
sandwich structures in the [100] direction

D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, 
Nature Commun. 2,  596 (2011).
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2nd order SOC
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FIG. 1: Formation of the honeycomb lattice in a (111) bilayer in the cubic lattice. (a) Perovskite structure ABO3.
(b) A (111) bilayer consisting of the top layer indicated by red circles and the bottom layer indicated by blue circles. The lattice
constant is a0. The bilayer shown as solid lines in (b) forms the honeycomb lattice when projected on the [111] plane with
the lattice constant ã =

√

2/3a0 (c). The real space coordinates are labeled by (x, y, z) in the original cubic lattice, while it is
labeled by (X,Y ) in the [111] plane. (d) Level structure of TM d orbital. In the cubic environment, d orbitals split into eg and
t2g manifolds. With the SOC, t2g manifold further splits into two levels characterized by the effective total angular momentum
j = 1/2 and 3/2. With the trigonal crystal field, t2g manifold splits into two levels denoted by a1g and e′g. With both the SOC
and the trigonal field, t2g manifold splits into three levels and eg manifold splits into two levels, i.e., all the degeneracies are
lifted except the Kramers doublets. (e) ABO3 monolayer is grown on AO3 terminated AB′O3 substrate capped by AB′O3.
The direction of crystal growth is indicated by an arrow.

the Brillouin zone without the SOC, and then examine
whether an energy gap can be opened at those points
with the SOC turned on. If an energy gap does open,
combined with proper filling the resulting state could
be a TI. In an ideal perovskite structure, the TM ions
sit on a simple cubic lattice, with the octahedral crys-
talline field splitting the TM d orbitals into two-fold
degenerate eg(d3z2−r2 , dx2−y2) and three-fold degenerate
t2g(dyz, dzx, dxy) levels, well separated by so-called 10Dq
on the order of 3 eV. Such a lattice geometry usually does
not support Dirac points. Instead, we consider bilayers
of the perovskite structure grown in the [111] direction.
As shown in Fig. 1, the TM ions in the (111)-bilayer are
located on a honeycomb lattice consisting of two trig-
onal sublattices on different layers. This lattice geom-
etry has three consequences: Firstly, it is well known
from the study of graphene that electrons hopping on
a honeycomb lattice generally give rise to Dirac points
in the band structure; secondly, A layer potential differ-
ence can be easily created by applying a perpendicular
electric field or by sandwiching the bilayer between two
different substrates, which allows experimental control
of the band topology; and, thirdly, the honeycomb lat-
tice further reduces the symmetry of the crystalline field
from octahedral (Oh) to trigonal (C3v), and introduces
additional level splitting of the d-orbitals. The last point
turns out to be crucial for realizing the topologically in-
sulating phase.
We first consider the t2g manifold, in which the on-site

SOC is active. In our modeling, only nearest-neighbor

hopping of d electrons between the TM sites via oxy-
gen p orbital is included. Since we are interested in the
band topology, which is robust against small perturba-
tions as long as the band gap remains open, our model
is justified and allows us to capture the essential ingredi-
ents with minimal parameterization. The tight-binding
Hamiltonian is given by

H = −t
∑

rr′ττ ′

T ττ ′

rr′ d†rτdr′τ ′ + λ
∑

r
lr · sr

+∆
∑

rτ "=τ ′

d†rτdrτ ′ +
V

2

∑

rτ
ξrd

†
rτdrτ , (1)

where r and τ label the lattice sites and the t2g orbitals,
respectively. The first term is the hopping term rep-
resented by a single amplitude t and the dimensionless
structural factor T ττ ′

rr′ . The second term is the on-site
SOC, which splits the t2g levels into a j = 1/2 doublet
with energy λ and a j = 3/2 quadruplet with energy
−λ/2. lr and sr are the angular momentum and spin
operators. The third term is the trigonal crystalline field
with which the a1g-e′g splitting is given by 3∆/2. V in the
last term is the layer potential difference, and ξr = ∓1
when r is in the top or bottom layer. The explicit form
of the Hamiltonian is presented in the Supplementary
Method.
The large number of orbitals (6 per TM site) involved

in our model give rise to a very rich behavior of the topo-
logical band structure in the parameter space. Depend-
ing on the strength of the SOC, the system falls into two
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FIG. 4: Bulk dispersion relations of the (111) bilayer of eg model with the Zeeman splitting. (a) Small Zeeman
splitting with B = 0.3t, and (b) large Zeeman splitting with B = 2t. Here we used λ̃ = 0.5t. Bands with the majority
(minority) spin component are indicated as red (blue) lines. Band dependent Chern number is also indicated.

bulk modes. In further thicker islands of (111) TMO lay-
ers, metallic state would be realized inside the sample. In
addition to (111) bilayers, we have studied model (111)
trilayers and found that the TI states are robust without
the even-odd oscillation between TI and trivial insulator,
as predicted for the bismuth thin films50. Structurally, a
(111) trilayer forms a so-called dice lattice, which could
also bring about interesting quantum effects character-
ized by the Chern number C = ±251. Of course, if the
layer structure is too thick then the bulk cubic symme-
try is restored and the system is no longer a TI. So far,
we did not mention the correlation effects and compet-
ing ground states except for the previous section. For
limiting cases, we have performed unrestricted Hartree-
Fock calculations for multi-orbital Hubbard models de-
fined on (111) bilayers. We found that the TI states
are rather robust for e2g systems and become unstable
against antiferromagnetic insulating states when the in-
teraction strength is comparable to the full bandwidth
as in the two-dimensional Hubbard model on the honey-
comb lattice52. For e1g or e3g systems, the QAH insulating
states could be generated dynamically by correlation ef-
fects without the SOC53,54, yet trivial insulating states
due to the Jahn-Teller effect would also be stabilized de-
pending on the relative balance between the Coulomb
interaction and the Jahn-Teller coupling. In this paper,
we focused on the perovskite-type TMOs. Thus, our de-
sign principle for the TI state works only for the [111]
plane because other planes such as [001] and [110] do not
support a honeycomb lattice. However, this approach is
not limited to the perovskite systems. For example, the
[0001] plane of corundum Al2O3, i.e., sapphire, involves
a honeycomb lattice formed by Al atoms. Such a sys-
tem could also be utilized as the substrate material to
artificially create the TI state.
Methods
Tight-binding models in the real space. First, we
consider a general multiband tight-binding (TB) model
on a cubic lattice given by

Hband = −
∑

〈rr′〉σ

∑

µµ′

{
tµµ

′

rr′d
†
rµσdr′µ′σ + h.c.

}
, (5)

where r labels the transition-metal sites, σ spin, and µ

orbitals. tµµ
′

rr′ is a transfer matrix which depends on the
pair of orbitals but not on the spin; its detail will be
presented shortly.
For t2g electron systems, the trigonal crystal field di-

rectly couples with the local t2g level. In addition, the
angular momentum is not quenched, and therefore the
spin-orbit coupling (SOC) is active. Including these
two effects, a TB model for t2g systems is written as
Ht2g = Hband +HSO +Htri with HSO and Htri given by
the second and the third terms of Eq. (1), respectively.
The explicit form of HSO for the t2g-alone model is given
by

HSO = λ
∑

r
lr · sr =

λ

2

∑

rσσ′

∑

ττ ′τ ′′

iεττ ′τ ′′d†rτσσ
τ ′′

σσ′drτ ′σ,

(6)
with the use of the following convention for the orbital
index: |a〉 = |dyz〉, |b〉 = |dzx〉, and |c〉 = |dxy〉. στ with
τ = a, b, c is the Pauli matrix, and εττ ′τ ′′ is the Levi-
Civita antisymmetric tensor.
The dependence of transfer matrices on the orbital and

direction is given by the Slater-Koster formula55 as fol-
lows:

taar,r±ŷ(ẑ) = tbbr,r±ẑ(x̂)
= tccr,r±x̂(ŷ)

= tπ, (7)

taar,r±x̂ = tbbr,r±ŷ = tccr,r±ẑ = tδ′ , (8)

for the nearest-neighbor (NN) hopping and

taar,r±ŷ±ẑ = tbbr,r±ẑ±x̂ = tccr,r±ŷ±ẑ = tσ′′ (9)

tabr,r±(x̂+ŷ)
= tbcr,r±(ŷ+ẑ) = tcar,r±(ẑ+x̂)

= tπ′ , (10)

tabr,r±(x̂−ŷ)
= tbcr,r±(ŷ−ẑ) = tcar,r±(ẑ−x̂)

= −tπ′ , (11)

for the second-neighbor (SN) hopping. Here, x̂, ŷ, and
ẑ are the unit vector along the x-, y-, and z-direction,
respectively. Although it is via weak π hybridization tπpd
between a transition-metal ion and an oxygen ion, the NN
hopping tπ ∝ (tπpd)

2/∆pd is the largest parameter in this
model, thus, taken as the unit of energy t. ∆pd is the level

- Instead (111) slabs would be 
good for topological physics 
(relatively flat C=1 bands). 

- But [111] is not a natural cleavage/growth direction...
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Epitaxial growth of (111)-oriented LaAlO3/LaNiO3 ultra-thin superlattices
S. Middey,1, a) D. Meyers,1 M. Kareev,1 E. J. Moon,1 B. A. Gray,1 X. Liu,1 J. W. Freeland,2 and J. Chakhalian1
1)Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701,
USA
2)Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439,
USA

The epitaxial stabilization of a single layer or superlattice structures composed of complex oxide materials on
polar (111) surfaces is severely burdened by reconstructions at the interface, that commonly arise to neutralize
the polarity. We report on the synthesis of high quality LaNiO3/mLaAlO3 pseudo cubic (111) superlattices
on polar (111)-oriented LaAlO3, the proposed complex oxide candidate for a topological insulating behavior.
Comprehensive X-Ray diffraction measurements, RHEED, and element specific resonant X-ray absorption
spectroscopy affirm their high structural and chemical quality. The study offers an opportunity to fabricate
interesting interface and topology controlled (111) oriented superlattices based on ortho-nickelates.

Over the past few years, complex oxide superlattices
(SL) with correlated carriers have been widely stud-
ied owing to the range of exciting phenomena emerg-
ing at the interface which are unattainable in the bulk
constituents.1,2 Recently, active experimental investiga-
tions3–7 on the class of SLs consisting of paramagnetic
metal LaNiO3 (LNO) and LaAlO3 (LAO) were initiated
after the prediction of a possible high Tc superconduc-
tivity in the LaNiO3/LaMO3 heterostructures (where
LaMO3 is a wide band-gap insulator).8,9 The experimen-
tal realization of LNO/LAO SLs grown on a (001)10 sur-
face of SrTiO3 (STO), however, revealed the presence
of an unexpected transition to Mott insulating ground
state with antiferromagnetic order due to quantum con-
finement and the effect of d-orbital polarization by the
interface.4,6 Inspired by this approach, several recent
theory proposals have been put forward regarding the
physics which may emerge in a bilayer of LaNiO3 sand-
wiched between LaAlO3 layers grown along the [111]
crystallographic direction. Specifically, the theory pre-
dicts the appearance of exotic topological phases (e.g.
Dirac half-semimetal phase, quantum anomalous Hall in-
sulator phase or ferromagnetic nematic phase) modulated
by the strength of electron-electron correlations.11–14 To
date, very little experimental work have been done to
develop such heterojunctions along the [111] direction to
verify the theoretical predictions about this class of arti-
ficial materials with interesting electronic and magnetic
ground states.
One of the main challenges in developing growth

along [111] is that commonly used substrates such as
LaAlO3 (or SrTiO3) consist of alternating LaO3−

3 Al3+

(or SrO4−
3 Ti4+) charged planes stacked along the [111] di-

rection. The epitaxial thin film growth along this highly
polar direction15–17 is far less understood due to the pos-
sible occurrence of complex surface reconstructions that
act to compensate for the polar mismatch. For example,
recently it has been demonstrated that for the systems
with strong polarity mismatch e.g. BiFeO3 on STO or

a)Electronic mail: smiddey@uark.edu

CaTiO3 on LAO, the epitaxial stabilization is possible
only if a “screening” buffer layer is grown first on the po-
lar surface.18 On the other hand, the polarity matching
at the interface can have strong influence on the epitax-
ial growth, defects formation and overall stoichiometry
of the layers as observed by the marked interfacial elec-
tronic reconstruction for polar LNO film grown on the top
of charge neutral STO vs. polar LAO (001) surface.19

In this letter, we present the results of artificial layer-
by-layer growth of an unique class of (111)-oriented
2LNO/mLAO heterostructures (with m = 2, 3, and 4
unit cells) on LAO (111) single crystal (see Fig. 1(a)).
The LAO substrate was selected to eliminate the effects
of lattice mismatch (i.e. strain) between the layers, which
otherwise may hinder the quality of growth. The exten-
sive characterization using reflection high energy electron
diffraction (RHEED), atomic force microscopy (AFM),
X-ray diffraction (XRD), and synchrotron based reso-
nant X-ray absorption spectroscopy (XAS) confirm the
high structural, chemical and electronic quality of these
superlattices designed to facilitate the realization of the
geometry driven electronic and magnetic phases.
Fully epitaxial 2LNO/mLAO SLs were grown by laser

MBE operating in interval deposition mode on commer-
cially available high-quality mixed terminated LAO (111)
substrates.20 The in-situ growth was monitored by high-
pressure RHEED. The growth was carried out under 50
mTorr of partial pressure of oxygen at a deposition rate of
20-30 Hz; the substrate temperature was set at 670◦C. To
maintain correct oxygen stoichiometry the grown samples
were subsequently post annealed in-situ for 30 minutes
in 1 Atm of ultra pure oxygen. Electrical d.c. trans-
port was performed in a commercial physical properties
measurement system using the van der Paw geometry.
In order to elucidate how the formally polar (111) sur-

faces of LAO substrate neutralizes the charge, we have
investigated the as-received LAO substrate by combina-
tion of atomic force microscopy (AFM) and X-ray pho-
toelectron spectroscopy (XPS) obtained at the different
core states at both the grazing and normal orientation
between the detector and the sample surface. The de-
tailed characterization has revealed that the substrate
possesses mixed termination (i.e. Al3+ and (LaO3)3−)

arXiv:1212.0590v1  [cond-mat.mtrl-sci]  4 Dec 2012
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- Stable surface states likely to be observed
- Natural cleavage/growth direction!

Suggestion: Grow (111) slabs of pyrochlore 
transition metal oxides, in particular A2Ir2O7 
iridate thin films

- Currently pursued by several experimental groups
- Stoichiometry enforce chemical potential at the 
Weyl point, i.e., in the surface band!

- Novel FCIs in thin slabs!?!

...much further work need
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Strongly correlated quantum systems can exhibit exotic behavior controlled by topology. We predict

that the ! ¼ 1=2 fractional Chern insulator arises naturally in a two-dimensional array of driven, dipolar-

interacting spins. As a specific implementation, we analyze how to prepare and detect synthetic gauge

potentials for the rotational excitations of ultracold polar molecules trapped in a deep optical lattice. With

the motion of the molecules pinned, under certain conditions, these rotational excitations form a fractional

Chern insulating state. We present a detailed experimental blueprint for its realization and demonstrate

that the implementation is consistent with near-term capabilities. Prospects for the realization of such

phases in solid-state dipolar systems are discussed as are their possible applications.
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The quest to realize novel forms of topological quantum
matter has recently been galvanized by the notion of frac-
tional Chern insulators—exotic phases, which arise when
strongly interacting particles inhabit a flat topological band
structure [1–8]. Particles injected into these exotic states of
matter fractionalize into multiple independently propagat-
ing pieces, each of which carries a fraction of the original
particle’s quantum numbers. While similar effects under-
pin the fractional quantum Hall effect observed in contin-
uum two dimensional electron gases [9,10], fractional
Chern insulators, by contrast, are lattice dominated. They
have an extremely high density of correlated particles
whose collective excitations can transform nontrivially
under lattice symmetries [8,11,12].

In this Letter, we predict the existence of a fractional
Chern insulator (FCI) in dipolar interacting spin systems.
This state exhibits fractionalization of the underlying spins
into quasiparticle pairs with semionic statistics [13,14].
The predicted FCI state may also be viewed as a gapped
chiral spin liquid [13,15].

Several recent studies have conjectured the existence of
fractionalized topological phases in idealized lattice mod-
els that require sensitively tuned long-range hopping and
interactions [5–7,16–18]. Broadly speaking, two single-
particle microscopic ingredients are required. First, the
dispersion of the lattice band structure must be quenched
relative to the energy scale of interactions [16–18]. Second,
the flat band should possess a nontrivial Chern number,
reflecting the underlying Berry phase accumulated by a
particle moving in the band structure. To observe a frac-
tionalized insulating state, one must partially fill the topo-
logical flat band structure with interacting particles; since
the FCI state generally competes with superfluid (SF) and

crystalline orders, the resulting phase diagram naturally
exhibits both conventional and topological phases (Fig. 1).
Up to now, it has been unclear whether such exotic
fractional Chern insulating phases can be realized in any
real-world physical system.
We consider a two-dimensional array of tilted, driven,

generalized spins interacting exclusively through their
intrinsic dipolar interaction, as depicted in Fig. 1(a). This
interaction mediates the long-range hopping of spin-flip
excitations. The quenching of the spin-flip band structure
owes to the anisotropy of the dipole-dipole interaction,
which yields interference between different hopping
directions [19]. The production of a synthetic background
gauge potential is accomplished via spatially varying
electromagnetic radiation [19,20]. Together, the dipolar
anisotropy and this radiation induce orientation-dependent
Aharonov-Bohm phases that ultimately generate topologi-
cally nontrivial flat bands [19].
To be specific, we focus on an implementation

using ultracold polar molecules trapped in a deep two-
dimensional optical lattice. Such an implementation has
many advantages, including local spatial addressing, stable
long-lived spins, and strong intrinsic dipolar interactions
[21–24]. The molecules are subject to a static electric field
~E tilted with respect to the lattice plane [inset Fig. 1(a)].
We assume that the molecular motion is pinned, and hence,
restrict our attention to an effective rotational degree of
freedom on each site, with associated Hamiltonian,
Hm ¼ BJ2 " dzE, where E is an applied electric field
[25]. In particular, we focus on the four lowest rotational
levels: j0; 0i, the rovibrational ground state and the three
states within the J ¼ 1 manifold (j1;"1i, j1; 0i, j1; 1i),
where J characterizes the rotational angular momentum of
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lattices) freedom can 
form FCIs 

Reaching Fractional Quantum Hall States with Optical Flux Lattices
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We present a robust scheme by which fractional quantum Hall states of bosons can be achieved for

ultracold atomic gases. We describe a new form of optical flux lattice, suitable for commonly used atomic

species with ground state angular momentum Jg ¼ 1, for which the lowest energy band is topological and
nearly dispersionless. Through exact diagonalization studies, we show that, even for moderate inter-

actions, the many-body ground states consist of bosonic fractional quantum Hall states, including the

Laughlin state and the Moore-Read (Pfaffian) state. These phases are shown to have energy gaps that are

larger than temperature scales achievable in ultracold gases.
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There is intense interest in finding new settings in which
topological phases of matter analogous to fractional quan-
tum Hall (FQH) states appear. Ultracold atomic gases are
ideal systems with which to achieve this goal: they allow
studies of strong correlation phenomena for both fermions
and bosons, and FQH physics can be approached for
homogeneous fluids [1] as well as for atoms confined in
optical lattices [2].

While existing theories of FQH-like phases in lattices
have focussed on tight-binding models [3–12], one of the
most promising routes to topological flat bands for ultra-
cold atoms is through optical flux lattices (OFLs) [13–15].
An OFL uses a set of laser beams to produce a spatially
periodic atom-laser coupling that induces resonant transi-
tions between two (or more) internal atomic states. The
resulting energy bands, in particular the lowest one, have
nonzero Chern numbers, and can be made narrow in energy
[15]. This opens the path to experimental studies of novel
strong correlation phenomena in topological flat bands,
notably the FQH effect of bosons.

We present, in this Letter, the first characterization of
the many-body ground state of bosons in an OFL. We start
with the design of a novel type of OFL, which fully
exploits the structure of the most commonly used (bosonic)
atomic species. We devise a method to optically dress three
internal states in a more general manner than previous OFL
proposals [13,14], which leads to much narrower topologi-
cal bands [15]. Our proposed OFL scheme is highly robust:
it uses three coplanar optical beams derived from a single
laser source, which do not require relative phase locking.
For optimized parameters the lowest band of the OFL has
Chern number 1 and is nearly dispersionless, closely analo-
gous to the lowest Landau level for a charged particle in a
uniform magnetic field. We use exact diagonalization to
determine the many-body spectrum of a bosonic gas in this
OFL. We show that FQH ground states appear for rela-
tively weak atom interaction at the same filling factors as

for a continuum Landau level [1]. Our work provides a
concrete experimental scheme by which FQH states of
bosons can be realized with large energy scales.
Furthermore, it provides the first example of a non-
Abelian quantum Hall state (the ! ¼ 1 Moore-Read state
[16]) in a lattice model at high particle density with only
two-body interactions.
We focus, in this Letter, on the case of atoms with

ground state angular momentum Jg ¼ 1, which is the
case for several bosonic isotopes of alkali metal species.
We denote jXi, jYi, jZi a basis of the ground state, defined
such that ĴXjXi ¼ 0 (and similarly for Y and Z). Here the
set of directions X, Y, Z represents an orthogonal trihedron
of the physical space [see Fig. 1(a)] and ĴX stands for the
component of the angular momentum operator along the X
direction. One can also replace jXi, jYi, jZi by a triplet of
internal states selected among a more complex level
scheme [17]. Our scheme will apply provided each pair
of states can be coupled by a resonant two-photon Raman
transition with a negligible spontaneous emission rate [18].
We assume that jXi, jYi, jZi are the eigenstates of the

atomic Hamiltonian in the absence of atom-laser coupling.
We suppose that these three states are nondegenerate and
nonequally spaced, and their energies are such that EX <
EY < EZ, with EZ " EY ! EY " EX. For alkali atoms this
situation can be reached by illuminating the atomic sample
with microwaves close to the hyperfine resonance (see
Supplemental Material [19]). We denote by z the (1, 1, 1)
direction of the X, Y, Z trihedron, and assume that the
center-of-mass motion of the atoms along the direction z
is frozen. Therefore, we consider, in the following, only the
atomic motion in the perpendicular xy plane [see Fig. 1(a)].
The atoms are irradiated with laser beams propagating

in the xy plane along three directions making an angle
of 2"=3 with each other. The three wave vectors are k1 ¼
k=2ð

ffiffiffi
3

p
ux þ uyÞ, k2¼k=2ð"

ffiffiffi
3

p
uxþuyÞ, and k3 ¼ "kuy,

where fux; uyg is an orthogonal unit basis of the xy plane.
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Artificial gauge fields 
by applying lasers 
with spatially 
modulated frequency

Both setups give rather flat bands “for free” (...well not quite, but still 
promising)

Several other promising ideas around...



Outlook 
Experimental realizations?!

Detailed theory of anomalous states in higher-C bands

Time-reversal invariant states?
Preliminary results are slightly disappointing -- exponentially localized 
Wannier functions as an explanation? (See Levin & Stern, PRL ’09 for 
alternative picture)

MPS and tensor network approaches
- Local finite-dimensional Hamiltonian without projection!
- Entanglement (area law) estimates indicate that this is feasible but there are at the same 
time considerable issues to solve for chiral phases described by 2D networks

Three-dimensional generalizations and strongly correlated phases in other 
surface bands
....

Lattice defects, dislocations and disorder

thank you!

Many possible directions here...


