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Two lectures: rough plan
The quantum Hall effect  

- Crash course on integer and fractional effects

- Why look for alternative realizations?

Integer Chern insulators    ~ lattice quantum Hall systems at zero field

- Example lattice models

- General properties, comparison with continuum Landau levels

- Experiments!

Fractional Chern insulators

- Relation to FQH states (adiabatic continuity, entanglement spectra, edge states, etc.)

- Competing instabilities

- Which FQH analogues to expect, when and why?

- Brief comments on challenge and methods

Higher Chern numbers
- Various constructions and why only some host FCIs

- Topology + frustration: novel FCIs in surface bands of Weyl semi-metals 

- Experiments?
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On fractional Chern insulators

Piet Brouwer (Berlin), Sebastian Diehl 
(Innsbruck), Heng Fan (Beijing), Masaaki 
Nakamura (Tokyo), Björn Sbierski (Berlin) 
Peter Zoller (Innsbruck) 

and recently on related projects



Some preliminaries on the
quantum Hall effect
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Useful references: 

Steven M. Girvin, 
The Quantum Hall Effect: Novel Excitations and Broken Symmetries
arXiv:cond-mat/9907002 

Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman & Sankar Das Sarma,
Non-Abelian Anyons and Topological Quantum Computation
Rev. Mod. Phys. 80, 1083 (2008) [arXiv:0707.1889]

http://arxiv.org/find/cond-mat/1/au:+Girvin_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Girvin_S/0/1/0/all/0/1
http://arxiv.org/abs/cond-mat/9907002
http://arxiv.org/abs/cond-mat/9907002
http://arxiv.org/find/cond-mat/1/au:+Nayak_C/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Nayak_C/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Simon_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Simon_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Stern_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Stern_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Freedman_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Freedman_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sarma_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sarma_S/0/1/0/all/0/1
http://arxiv.org/abs/0707.1889
http://arxiv.org/abs/0707.1889


The quantum Hall effect
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Landau levels 
with bulk gap 
and protected 
edge states 

Cold 2D electrons in a strong magnetic field. 

RK = h/e2 = 25812.807557(18)⌦

Quantization, IQHE:

(von Klitzling et al ’80)

Single-particle explanation (Laughlin ‘81, Halperin ’82,...)

One state per 
“flux quantum”

� = 2/5, 3/7, ...

s = 1/3, 1/5, 2/5, ...

1/2, 1/4

⇥0 = hc/e

7

(Thouless et al ’82)

Chern number



Integer & fractional quantum Hall effects
Lower temperature, cleaner samples, 
stronger B-fields
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(Willett et al1987)
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von Klitzing, Dorda, Pepper 1980

 

⌫ =
1

3
,
2

5
. . . Fractional QHE

Tsui, Störmer, Gossard  1982
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5
. . . Non-abelian

Fractional QHE?
Willet et al  1987 

....and much more

Stripes (high LL’s)
Wigner Crystals (low 
filling).....

Similar experimental signatures, but the integer explanation 
does not apply!



Fractional quantum Hall effect
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⌫ = 1

Bulk gap

!

⌫ = 1/3

!?

Flat band, partial filling Interactions within the band 
determine everything!

Wigner crystals only at very low filling, below 1/7 (“Topological obstruction”)



Fractional quantum Hall effect

 ⌫=1/3 =
Y

i<j

(zi � zj)
3e�

P
i |zi|

2/4`2BLaughlin!

 ⌫=1 =
Y

i<j

(zi � zj)e
�

P
i |zi|

2/4`2BFilled Landau level
| |2

 m / zme�|z|2/4`2B A =
B

2
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3
Filling fraction:

Unique vanishing properties Gap!  (well,...)

Topological order!



Fractionalization 

1, 0 ! ↵|0i+ �|1i Immune to noise, decoherence etc             (Kitaev ’97)

The dream: topological quantum computation

!
Y
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- Easily splits in 3 equal pieces:

- Abelian anyons with charge e*=e/3 and fractional statistics!

 ⌫=1/3, 3 qh0s =
Y

i

(zi � w)3
Y

i<j

(zi � zj)
3e�

P
i |zi|

2/4`2B

- Hole with charge e*=e at w (fermionic statistics).

(Fractional) excitations

States with non-Abelian excitations conjectured 
- Majorana fermions at filling 5/2
- Fibonacci anyons at 12/5 filling!?
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time

σ1 σ2

!=

=

FIG. 1 Top: The two elementary braid operations σ1 and σ2 on
three particles. Middle: Here we show σ2σ1 != σ1σ2, hence the
braid group is Non-Abelian. Bottom: The braid relation (Eq. 3)
σiσi+1σi = σi+1σiσi+1.

of the corresponding trajectories, i.e. the vertical stacking of
the two drawings. (As may be seen from the figure, the order
in which they are multiplied is important because the group
is non-Abelian, meaning that multiplication is not commuta-
tive.)
The braid group can be represented algebraically in terms of

generators σi, with 1 ≤ i ≤ N−1. We choose an arbitrary or-
dering of the particles 1, 2, . . . , N .2 σi is a counter-clockwise
exchange of the ith and (i + 1)th particles. σ−1

i is, therefore, a
clockwise exchange of the ith and (i + 1)th particles. The σis
satisfy the defining relations (see Fig. 1),

σiσj = σjσi for |i − j| ≥ 2
σiσi+1σi = σi+1σi σi+1 for 1 ≤ i ≤ n − 1 (3)

The only difference from the permutation group SN is that
σ2

i != 1, but this makes an enormous difference. While
the permutation group is finite, the number of elements in
the group |SN | = N !, the braid group is infinite, even for
just two particles. Furthermore, there are non-trivial topolog-
ical classes of trajectories even when the particles are distin-
guishable, e.g. in the two-particle case those trajectories in

2 Choosing a different ordering would amount to a relabeling of the elements
of the braid group, as given by conjugation by the braid which transforms
one ordering into the other.

which one particle winds around the other an integer num-
ber of times. These topological classes correspond to the ele-
ments of the ‘pure’ braid group, which is the subgroup of the
braid group containing only elements which bring each parti-
cle back to its own initial position, not the initial position of
one of the other particles. The richness of the braid group is
the key fact enabling quantum computation through quasipar-
ticle braiding.
To define the quantum evolution of a system, we must now

specify how the braid group acts on the states of the system.
The simplest possibilities are one-dimensional representations
of the braid group. In these cases, the wavefunction acquires
a phase θ when one particle is taken around another, analo-
gous to Eqs. 1, 2. The special cases θ = 0,π are bosons
and fermions, respectively, while particles with other values
of θ are anyons (Wilczek, 1990). These are straightforward
many-particle generalizations of the two-particle case consid-
ered above. An arbitrary element of the braid group is rep-
resented by the factor eimθ where m is the total number of
times that one particle winds around another in a counter-
clockwise manner (minus the number of times that a particle
winds around another in a clockwise manner). These repre-
sentations are Abelian since the order of braiding operations
in unimportant. However, they can still have a quite rich struc-
ture since there can be ns different particle species with pa-
rameters θab, where a, b = 1, 2, . . . , ns, specifying the phases
resulting from braiding a particle of type a around a particle of
type b. Since distinguishable particles can braid non-trivially,
i.e. θab can be non-zero for a != b as well as for a = b,
anyonic ‘statistics’ is, perhaps, better understood as a kind of
topological interaction between particles.
We now turn to non-Abelian braiding statistics, which

are associated with higher-dimensional representations of the
braid group. Higher-dimensional representations can occur
when there is a degenerate set of g states with particles at fixed
positionsR1, R2, . . ., Rn. Let us define an orthonormal basis
ψα, α = 1, 2, . . . , g of these degenerate states. Then an ele-
ment of the braid group – say σ1, which exchanges particles 1
and 2 – is represented by a g × g unitary matrix ρ(σ1) acting
on these states.

ψα → [ρ(σ1)]αβ ψβ (4)

On the other hand, exchanging particles 2 and 3 leads to:

ψα → [ρ(σ2)]αβ ψβ (5)

Both ρ(σ1) and ρ(σ2) are g × g dimensional unitary matri-
ces, which define unitary transformation within the subspace
of degenerate ground states. If ρ(σ1) and ρ(σ1) do not com-
mute, [ρ(σ1)]αβ [ρ(σ2)]βγ != [ρ(σ2)]αβ [ρ(σ1)]βγ , the parti-
cles obey non-Abelian braiding statistics. Unless they com-
mute for any interchange of particles, in which case the par-
ticles’ braiding statistics is Abelian, braiding quasiparticles
will cause non-trivial rotations within the degenerate many-
quasiparticle Hilbert space. Furthermore, it will essentially be
true at low energies that the only way to make non-trivial uni-
tary operations on this degenerate space is by braiding quasi-
particles around each other. This statement is equivalent to a

- e*=e/3 observed in shot noise!    (two groups ’97)



The fractional quantum Hall effect has essentially all 
phenomena we can dream of -- why look further?

�E ⇠ e2/`B

Extreme conditions needed

- Very cold, less than one Kelvin

- Very strong magnetic fields, typically 10-30 Tesla

- Extremely clean samples are needed, especially for 
possible non-Abelian states

Are there alternative realizations?
Wish list: - Zero (or at least weak) magnetic field

- Larger gaps (shorter characteristic length scales)
- Even richer phenomena

So far: No “topological quantum computer” in service, no Nobel 
prize for non-Abelian anyons.

- Despite the first observation of the 5/2 state in 1987, and 
more recently many other suggested realizations...



Chern insulators
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Useful references: 

S. A. Parameswaran, R. Roy & S. L. Sondhi
Fractional Quantum Hall Physics in Topological Flat Bands
C. R. Physique 14, 816 (2013) [arXiv:1302.6606]

E. J. Bergholtz & Z. Liu
Topological Flat Band Models and Fractional Chern Insulators
Int. J. Mod. Phys. B 27, 1330017 (2013) [arXiv:1308.0343]

L. Chen, T. Mazaheri, A. Seidel, & X. Tang, 
The impossibility of exactly flat non-trivial Chern bands in strictly 
local periodic tight binding models
J. Phys. A: Math. Theor. 47, 152001 (2014) [arXiv:1311.4956]

~ lattice quantum Hall systems at zero field

http://arxiv.org/find/cond-mat/1/au:+Parameswaran_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Parameswaran_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Roy_R/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Roy_R/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sondhi_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sondhi_S/0/1/0/all/0/1
http://arxiv.org/abs/1302.6606
http://arxiv.org/abs/1302.6606
http://arxiv.org/find/cond-mat/1/au:+Bergholtz_E/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bergholtz_E/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Liu_Z/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Liu_Z/0/1/0/all/0/1
http://arxiv.org/abs/1308.0343
http://arxiv.org/abs/1308.0343
http://arxiv.org/abs/1311.4956
http://arxiv.org/abs/1311.4956


The Haldane model
Spinless ‘graphene’ + complex next nearest neighour hopping

3. Chern Insulator Models

Figure 3.1.: Haldane’s honeycomb lattice. Differently colored nodes differentiate unequiv-
alent basis sites. Positive phases for hopping are taken when following paths
along the arrows.
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Haldane showed in his paper [10] that this model has a non-vanishing IQHE for some
ranges of the parameters M

t2
and �. The non-vanishing Chern number can be understood

in terms of the argument given in the above section 3.2. The relevant parts of the Berry
curvature are given by the two Dirac points. The breaking of time-reversal symmetry
introduces a mass term m�3 in the Dirac equation description described above with
masses m and m0 = �m for the two unequivalent Dirac cones, due to inversion symmetry.
Each Dirac cone then contributes ±1

2 towards the Chern number. For the insulating
phases these terms cancel and in the parameter region exhibiting the IQHE they add [35].

The flatness of the bands in Haldane’s model was analyzed by Neupert et al. [42],
but we have not it for any calculations. Nevertheless we wanted to introduce it here
first because of its historical significance and since it can be fully understood within the
framework of the previous section.

3.2.2. Grushin’s Model

The model discussed by Grushin et al. in their paper [40] is a simple square lattice with
two orbitals per site sporting phases with C = 0, ±1, ±2 and was extensively used in the

22

- Zero average magnetic field

F.D.M. Haldane, 
Model for a Quantum Hall Effect without Landau Levels: 
Condensed-Matter Realization of the "Parity Anomaly" 
Phys. Rev. Lett. 61, 2015 (1988).
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With Eqs. (8) and (9), one can easily get that the solu-
tions satisfy

M21(ε) = 0 (12)

and

ϕLy−1 = −M11 (ε)ϕ1. (13)

If we use a usual normalized wave function, the state is
localized at the edges as
{

|M11(ε)| " 1 localized at y ≈ 1 (down edge),
|M11(ε)| $ 1 localized at y ≈ Ly − 1 (up edge).

(14)
Because the analytical derivation of the energy spec-

trum in the presence of edges is very difficult, we now
start a numerical calculation from Eqs. (3) and (10).
Varying all the controllable parameters, which are the
relative site energy M/t1, the next nearest neighbor hop-
ping t2/t1, and the complex phase φ, we can get three
different cases happening in the energy spectrum of the
graphene ribbons. We draw in Figs. 2(a)-(c) [Figs. 3(a)-
(c)] the energy spectrum of graphene ribbons with zigzag
(armchair) edges as a function of kx for these three dif-
ferent cases, i.e., the case M/t2 < 3

√
3 sinφ (case I),

the case M/t2 < −3
√

3 sinφ (case II), and the case
M/t2 > 3

√
3| sinφ| (case III), respectively. The num-

ber of sites A (B) in y direction is chosen to be Ly=40.
Clearly, from Figs. 2 and 3 one can see that there are
two dispersed energy bands (the shaded areas) with two
edge states (the colored lines) lying in the energy gap.
It is our task to show that the geometric nature of the
edge states in these three kinds of parameter regions are
totally different, which can be described by the wind-
ing numbers of the edge states on a complex energy RS
within the topological edge theory [6].

To show this, first, we ignore the open boundary con-
dition and consider the bulk Bloch function at sites with
y-coordinate of (Ly−1). For Bloch function, ϕ(b)

0 and

ϕ(b)
1 compose an eigenvector of M with the eigenvalue ρ,

M(ε)

(
ϕ(b)

1

ϕ(b)
0

)

= ρ (ε)

(
ϕ(b)

1

ϕ(b)
0

)

. (15)

In order to discuss the wave function of the edge state, we
extend the energy to a complex energy. In the following,
we use a complex variable z instead of real energy ε. From
Eq. (15) we get

ρ(z) =
1

2

[
∆(z) −

√
∆2(z) − 4

]
(16)

and

ϕLy−1 = −
M11 (z) + M22(z) − ω

−M11 (z) + M22(z) + ω
M21(z)ϕ1, (17)

FIG. 2: (Color online) Energy spectrum of the graphene rib-
bon with zigzag edges under different complex phases parame-
ters: (a) φ=π/3, (b) φ=−π/3, (c) φ=π/6. The other param-
eters are set as M/t1=1 and t2/t1=1/3 in all three figures.
The shaded areas are the energy bands and the colored lines
are the spectrum of the edge states. The red (solid) and blue
(dashed) lines mean that the edge states are localized near
the down and up edges, respectively.

FIG. 3: (Color online) Energy spectrum of the graphene rib-
bon with armchair edges under different complex phases pa-
rameters: (a) φ=π/3, (b) φ=−π/3, (c) φ=π/6. The other
parameters are set as M/t1=1 and t2/t1=1/3 in all three fig-
ures. The shaded areas are the energy bands and the colored
lines are the spectrum of the edge states. The red (solid) and
blue (dashed) lines mean that the edge states are localized
near the down and up edges, respectively.

where ∆(z)=Tr[M(z)] and ω=
√

∆2(z) − 4. Clearly,

detM(ε) = 1 (18)

since det M̃(ε)=1. From Eq. (17) one can find that
the analytic structure of the wave function is deter-
mined by the algebraic function ω=

√
∆2(z) − 4. The

RS of ω=
√

∆2(z) − 4 on the complex energy plane can
be built by the conglutination between different analytic
brunches. Here, the close complex energy plane can be
obtained from the open complex energy plane through
spheral pole mapping [see Fig. 4(a)]. Now let us discuss
the analytic structure of ω =

√
∆2(z) − 4 on the open

complex energy plane. If the system has q energy bands,
i.e.,

cylinder spectra

Correlations and entanglement in flat band models with variable Chern numbers 4

hopping range.

2.1. An instructive two band model

We start with the Hamiltonian

H =
∑

k

c†kαH(k)αβckβ, (1)

where

H(k) = (sin kx)σx + (sin ky)σy + (m + cos kx + cos ky)σz (2)

is defined on a square lattice with Nx × Ny sites and the Pauli matrices, σi, define an

internal degree of freedom at each lattice point [52]. The band structure of this model

is composed of two bands, and the Chern number C of the lower band can be classified

[53], according to the value of m, as

C =






1 for 0 < m < 2

−1 for − 2 < m < 0

0 otherwise

(3)

We set m = 1 throughout this paper, which will ensure that we stick to the topologically

non-trivial regime. By introducing d-vector,





dx(k) = sin kx

dy(k) = sin ky

dz(k) = m + cos kx + cos ky

(4)

the Bloch Hamiltonian (2) can be conveniently written as

H(k) = d(k) · σ. (5)

The d vector representation directly leads to a geometrical expression for the Chern

number:

C =
1

4π

∫
dkx

∫
dky d̂ ·

( ∂d̂

∂kx
× ∂d̂

∂ky

)
, (6)

where d̂ ≡ d(k)/|d(k)| is the unit length vector parallel to d(k). By regarding d̂ as

the mapping from Brioullion zone (BZ) to the sphere surface d̂ : [0, 2π) × [0, 2π) → S2,

the Chern number C acquires the geometrical meaning: C represents the wrapping

number of this mapping. According to (3), the d-vector chosen as (4) wraps the

sphere only one time for 0 < m < 2, while k = (kx, ky) sweeps the BZ. The integrand

B(k) ≡ d̂·
(

∂d̂
∂kx

× ∂d̂
∂ky

)
is the Berry curvature which can be interpreted as a magnetic field

in reciprocal space. Physically, the Chern number corresponds to the number of current

carrying chiral edge states, which directly gives the quantized transverse conductivity

σxy = C e2

h for a filled, hence bulk insulating, band carrying Chern number C [54, 55, 56].

In order to generate a two-band model with arbitrary Chern number from

Hamiltonian (5), let us first introduce polar coordinate and express d-vector (4) as
(
dx(k), dy(k), dz(k)

)
= |d(k)|

(
sin θk cos φk, sin θk sin φk, cos θk

)
(7)

Topologically protected gapless chiral edge states

C = 1 C = �1

- Bulk-boundary correspondence 

- Quantized Hall response:



The Dirac model

Generic two-band model, formulated directly in reciprocal space

Correlations and entanglement in flat band models with variable Chern numbers 4
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In a real space, this model can be expressed in tight-
binding form as

H =
∑

n

[

c†n
σz − iσx

2
cn+x̂ + c†n

σz − iσy

2
cn+ŷ + h.c.

]

+m
∑

n

c†nσzcn (14)

Physically, such a model describes the quantum anoma-
lous Hall effect realized with both strong spin-orbit cou-
pling (σx and σy terms) and ferromagnetic polarization
(σz term). Initially this model was introduced for its sim-
plicity in Ref. 35, however, recently, it was shown that it
can be physically realized in Hg1−xMnxTe/Cd1−xMnxTe
quantum wells with a proper amount of Mn spin
polarization38.
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cα(x, y)eikyy,

FIG. 2: (a) Illustration of a square lattice with cylindrical
geometry and the chiral edge states on the boundary. The
definition of x and y axis are also shown by black arrows.
(b) One-d energy spectrum of the model in Eq. (12) with
m = −1.5. The red and black line stands for the left and
right moving edge states, respectively, while the blue lines are
bulk energy levels. (c) Illustration of the edge states evolution
for ky = 0 → 2π. The arrow shows the motion of end states
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Polarization of the one-d system versus ky. (See text)

with (x, y) the coordinates of square lattice sites, the
Hamiltonian can be rewritten as

H =
∑

ky,x

[
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(x)

σz − iσx

2
cky(x + 1) + h.c.

]

+
∑
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c†ky
(x) [sin kyσy + (m + cos ky)σz ] cky (x)

≡
∑

ky

H1D(ky). (15)

In this way, the 2D system can be treated as Ly inde-
pendent 1D tight-binding chains, where Ly is the period
of the lattice in the y-direction. The eigenvalues of the
1D Hamiltonian H1D(ky) can be obtained numerically for
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a constant electric field Ey in the y-direction, which can
be chosen as

Ay = −Eyt, Ax = 0.
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nificant. This result is in sharp contrast to what is found
in earlier studies of Abelian FCIs, which are known to be
weakened and ultimately destroyed by long-range interaction-
s. A key difference between our work and previous studies is
our choice of the Kapit-Mueller Hamiltonian1 for the single-
particle Chern band, which has a number of compelling fea-
tures which make it particularly well suited for stabilizing ex-
otic anyon states. While two very recent works have reported
tentative evidence for the MR phase for realistic (short-range,
two-body) interactions,13,27 our identification of this phase is
arguably more compelling, using the full state-of-the-art tool-
box of numerical techniques coupled with analytical consid-
erations. Our observation of the Z

3

RR state for two-body
interactions is entirely new and particularly important since
the low-energy excitations include Fibonacci anyons which
can be used to perform universal quantum computation (in
contrast to the Majorana fermion excitations of the MR state,
which cannot).

The remainder of this paper is organized as follows. In
Sec. II we describe the Kapit-Mueller parent Hamiltonian
for the lattice lowest Landau level (LLL) and describe var-
ious measures, including topological ground-state degenera-
cy, spectral flow, wave-function overlap, and particle-cut en-
tanglement spectrum, which we use to verify the topological
character of the states that we find through exact diagonaliza-
tion. In Sec. III we report on the results of our calculations for
bosons with dipolar interactions in the Kapit-Mueller Hamil-
tonian and demonstrate the existence of non-Abelian anyon
states. In Secs. IV and V we construct an analogous formula-
tion of Haldane’s pseudopotentials in our lattice Hamiltonian,
and demonstrate how the structure of these pseudopotentials
can be used to optimize the interactions to further increase the
stability of non-Abelian ground states. In Sec. VI we discuss
how the model studied in our work might be implemented in
realistic systems such as cold atoms or qubit arrays, and in
Sec. VII we offer concluding remarks.

II. HAMILTONIAN AND METHODS

A. Kapit-Mueller Hamiltonian

We study N
b

interacting bosons on 2D square lattices with
unit lattice spacing, with single-particle physics governed by
the Kapit-Mueller Hamiltonian,1

H
0

= �
X

j 6=k

⇣
J (z
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) a†
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+H.c.
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, (1)
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⇤
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⌘
x + iy, and W (z) = (�1)
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e�(⇡/2)(1��)|z|2 in the
symmetric gauge. The hopping matrix elements of this Hamil-
tonian are complex, and the complex phase e(⇡/2)(zjz

⇤�z

⇤
j z)�

is nothing more than the symmetric gauge Peierls phase from
a uniform magnetic flux which penetrates the lattice and has
a strength of � flux quanta per plaquette. We can rewrite
this Hamiltonian in the Landau gauge via the transformation
a†
j

! a†
j

exp (�i⇡�x
j

y
j

). The Hamiltonian can be defined

for any 0  � < 1, and in this work we study the rational
flux densities � = 1/q with q = 2, 3, 4, 8. The hopping ma-
trix elements of (1) are infinite ranged, but as they decay as
a Gaussian, only a few terms beyond nearest-neighbor (NN)
hopping need to be kept, and the Hamiltonian can be readi-
ly generalized to finite lattices of L

1

⇥ L
2

sites with periodic
boundary conditions by summing over lattice translations as
described in Ref. 1. A unit cell in the Landau gauge contains
q sites in the x�direction, so the lattice has (qN

1

)⇥N
2

sites
if there are N

1

⇥ N
2

unit cells. Following the standard con-
ventions of the literature, the band filling fraction is defined as
⌫ ⌘ N

b

/(N
1

N
2

).
We study this Hamiltonian because its spectrum has an ex-

tensively degenerate ground state manifold which is exactly
flat, separated from any excited bands by a large gap and s-
panned by lattice discretizations of the exact LLL wave func-
tions of the continuum,1 which are described by elliptic ✓
functions in the torus geometry that we study. These functions
are evaluated over complex integer z

j

and the fraction of states
in the lattice LLL is simply �. This analytical understanding
of the wavefunctions allows us to exactly generalize a number
of results found in the continuum LLL problem. In particular,
for bosons at filling fraction ⌫ = k/2 with a (k + 1)�body
repulsive on-site interaction, the system’s ground-state wave
function is exactly given by the RR state of level k,28 with a
gap to both particle and hole excitations if the chemical po-
tential is chosen to lie inside the many-body gap. We exploit
this exactness to help confirm the topological character of the
ground states with ranged two-body interactions, the focus of
this work.

The dramatic flattening of the lowest band in this Hamilto-
nian can be seen in Fig. 1. It is important to note that, while
the LLL wavefunctions have the same functional form as in
the continuum and the magnetic length l

B

= 1/
p
2⇡� can

be less than a lattice spacing, the discretization of the LLL
onto the lattice has important physical consequences. The lat-
tice spacing itself introduces a second length scale into the
system, and as a result the properties of a given state depend
upon both the filling fraction ⌫ and the flux density �. Unlike
in the continuum LLL, two Kapit-Mueller systems with the
same interactions but different flux densities can have topo-
logically distinct ground states for the same ⌫; for example,
we were able to find k = 3 RR ground states in bosons at
⌫ = 3/2 for � = 1/4 and � = 1/3, but not for � = 1/2. This
occurs in part because the ground-state manifold of the Kapit-
Mueller Hamiltonian is energetically flat but not “Berry flat”;
the gauge-invariant Berry curvature of the lowest band is posi-
tive definite across the magnetic Brillouin zone, but unlike the
continuum, it is only uniform in the limit � ! 0 (Fig. 2). Sim-
ilarly, while the powers of zn

j

or elliptic ✓ functions are exact
ground states of Eq. (1), the discretization to the lattice breaks
the rotational and continuous magnetic translational symme-
tries of the continuum and they are not naturally orthogonal.
Consequently, Haldane pseudopotentials,29,30 which are one
of the most valuable tools in studying the continuum problem,
cannot be generalized exactly to the lattice case. They can still
be a valuable approximate tool in our model, however; we dis-
cuss an effective formulation of the Haldane pseudopotentials
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FIG. 1. (Color online) Flattening of the lowest band(s) with longer-
ranged hopping on a square lattice. Top: Distribution of eigenvalues
for the Hofstadter problem – a nearest-neighbor hopping model on
a square lattice in a uniform gauge field of strength � quanta per
plaquette, with the magnitude of the hopping matrix element set to
unity. Bottom: The same distributions for the Kapit-Mueller Hamil-
tonian, (1), with the nearest-neighbor hopping matrix element set to
unity as well and a shift of the whole spectrum for a better compar-
ison with the top figure. On an L

1

⇥ L

2

lattice with magnetope-
riodic boundary conditions, the lowest �L

1

L

2

states (those within
the shaded triangle) collapse to an exactly degenerate lowest Landau
level. As � ! 1 the hopping becomes infinite ranged in this Hamil-
tonian, as seen in the diverging energy of the highest band. We only
study 1/8  �  1/2 in this work.

later in this work. In fact, the analogy with pseudopotentials
leads us to introduce the new concept of "interaction flatness,"
which serves as an efficient guideline in the search for realistic
models with stable non-Abelian FCIs.

B. Topological degeneracies, trial wave functions, and
entanglement spectrum

The primary purpose of this work is to demonstrate the
existence of non-Abelian anyon ground states of interacting
bosons with ranged two-body interactions and with the single-

particle physics described by Hamiltonian (1). We do so
by using numerical exact diagonalization to study small sys-
tems of up to 18 interacting particles with magnetoperiodic
boundary conditions, and to make the calculation numerically
tractable we project onto the exactly flat lowest band of H

0

and diagonalize the interaction terms within the reduced ba-
sis. This approximation is good if the interaction potentials
are weak compared to the band gap, which is ⇠ 3�4J

NN

for
the flux densities considered. We have three main tools at our
disposal to demonstrate the anyon content of the resulting nu-
merically generated ground states: topological degeneracies,
overlap with the RR trial wave functions, and the particle-cut
entanglement spectrum.

The anyon statistics of generic RR states require a ground-
state degeneracy when the system is placed on a torus.31–33

For the (k + 1)�body on-site interaction of lattice bosons
this degeneracy is exact for any system size commensurate
with the filling fraction, but for more general ranged inter-
actions it is broken by finite-size effects, though the magni-
tude of this breaking is small compared to the excitation gap
and is expected to vanish in the infinite-system limit. The
k = 1, 2, 3 states of bosons are two-, three-, and fourfold de-
generate on the torus, and if the ground states of ranged in-
teractions are in the identical topological phase, the same (ap-
proximate) ground-state degeneracy as in the RR states should
be observed. While it is possible in principle that degenera-
cies in a ranged case could stem from separate effects which
have nothing to do with the anyon content (such as charge
density waves), we see no evidence of this occurring in our
calculations.

The topological degeneracy of ground states should also be
robust to twisted boundary conditions. For a many-body s-
tate  , the twisted boundary condition in the x(y) direction
is defined as  (r
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+ L
1(2)

e
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) = exp(i�) (r
j

), where �
is the magnetic flux inserted through the handle of the torus
and e

x(y)

is the unit vector in the x(y) direction. � = 0
corresponds to the usual periodic boundary condition. In the
spectral flow, i.e., the energy spectra as a function of �, the
ground states should never mix with excited levels.

In the continuum, the RR states of level k28 are the exact
and unique (up to topological degeneracies) ground states of
a (k+1)�body repulsive � interaction in the LLL. As our lat-
tice model, (1), has the same single-particle wave functions as
the continuum, the lattice discretizations of the RR states are
exact ground states of the (k+1)-body on-site repulsion term
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that the braid statistics of the anyon excitations of these states
are Abelian for k = 1, equivalent to Ising anyons or Majorana
modes for k = 2,42 and Z
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parafermions or Fibonacci anyons
for k = 3.

As we can numerically obtain the exact RR states in the
lattice by diagonalizing the (k + 1)�body on-site interac-
tion, a simple tool at our disposal for predicting the topo-
logical character of the ground states for generic ranged in-
teractions is the wave-function overlap. We first diagonal-
ize the (k + 1)�body on-site interaction to get a degener-
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level. As � ! 1 the hopping becomes infinite ranged in this Hamil-
tonian, as seen in the diverging energy of the highest band. We only
study 1/8  �  1/2 in this work.
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actions it is broken by finite-size effects, though the magni-
tude of this breaking is small compared to the excitation gap
and is expected to vanish in the infinite-system limit. The
k = 1, 2, 3 states of bosons are two-, three-, and fourfold de-
generate on the torus, and if the ground states of ranged in-
teractions are in the identical topological phase, the same (ap-
proximate) ground-state degeneracy as in the RR states should
be observed. While it is possible in principle that degenera-
cies in a ranged case could stem from separate effects which
have nothing to do with the anyon content (such as charge
density waves), we see no evidence of this occurring in our
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corresponds to the usual periodic boundary condition. In the
spectral flow, i.e., the energy spectra as a function of �, the
ground states should never mix with excited levels.

In the continuum, the RR states of level k28 are the exact
and unique (up to topological degeneracies) ground states of
a (k+1)�body repulsive � interaction in the LLL. As our lat-
tice model, (1), has the same single-particle wave functions as
the continuum, the lattice discretizations of the RR states are
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tion, a simple tool at our disposal for predicting the topo-
logical character of the ground states for generic ranged in-
teractions is the wave-function overlap. We first diagonal-
ize the (k + 1)�body on-site interaction to get a degener-
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nificant. This result is in sharp contrast to what is found
in earlier studies of Abelian FCIs, which are known to be
weakened and ultimately destroyed by long-range interaction-
s. A key difference between our work and previous studies is
our choice of the Kapit-Mueller Hamiltonian1 for the single-
particle Chern band, which has a number of compelling fea-
tures which make it particularly well suited for stabilizing ex-
otic anyon states. While two very recent works have reported
tentative evidence for the MR phase for realistic (short-range,
two-body) interactions,13,27 our identification of this phase is
arguably more compelling, using the full state-of-the-art tool-
box of numerical techniques coupled with analytical consid-
erations. Our observation of the Z

3

RR state for two-body
interactions is entirely new and particularly important since
the low-energy excitations include Fibonacci anyons which
can be used to perform universal quantum computation (in
contrast to the Majorana fermion excitations of the MR state,
which cannot).

The remainder of this paper is organized as follows. In
Sec. II we describe the Kapit-Mueller parent Hamiltonian
for the lattice lowest Landau level (LLL) and describe var-
ious measures, including topological ground-state degenera-
cy, spectral flow, wave-function overlap, and particle-cut en-
tanglement spectrum, which we use to verify the topological
character of the states that we find through exact diagonaliza-
tion. In Sec. III we report on the results of our calculations for
bosons with dipolar interactions in the Kapit-Mueller Hamil-
tonian and demonstrate the existence of non-Abelian anyon
states. In Secs. IV and V we construct an analogous formula-
tion of Haldane’s pseudopotentials in our lattice Hamiltonian,
and demonstrate how the structure of these pseudopotentials
can be used to optimize the interactions to further increase the
stability of non-Abelian ground states. In Sec. VI we discuss
how the model studied in our work might be implemented in
realistic systems such as cold atoms or qubit arrays, and in
Sec. VII we offer concluding remarks.

II. HAMILTONIAN AND METHODS

A. Kapit-Mueller Hamiltonian

We study N
b

interacting bosons on 2D square lattices with
unit lattice spacing, with single-particle physics governed by
the Kapit-Mueller Hamiltonian,1
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e�(⇡/2)(1��)|z|2 in the
symmetric gauge. The hopping matrix elements of this Hamil-
tonian are complex, and the complex phase e(⇡/2)(zjz

⇤�z

⇤
j z)�

is nothing more than the symmetric gauge Peierls phase from
a uniform magnetic flux which penetrates the lattice and has
a strength of � flux quanta per plaquette. We can rewrite
this Hamiltonian in the Landau gauge via the transformation
a†
j

! a†
j

exp (�i⇡�x
j

y
j

). The Hamiltonian can be defined

for any 0  � < 1, and in this work we study the rational
flux densities � = 1/q with q = 2, 3, 4, 8. The hopping ma-
trix elements of (1) are infinite ranged, but as they decay as
a Gaussian, only a few terms beyond nearest-neighbor (NN)
hopping need to be kept, and the Hamiltonian can be readi-
ly generalized to finite lattices of L

1

⇥ L
2

sites with periodic
boundary conditions by summing over lattice translations as
described in Ref. 1. A unit cell in the Landau gauge contains
q sites in the x�direction, so the lattice has (qN

1

)⇥N
2

sites
if there are N

1

⇥ N
2

unit cells. Following the standard con-
ventions of the literature, the band filling fraction is defined as
⌫ ⌘ N

b

/(N
1

N
2

).
We study this Hamiltonian because its spectrum has an ex-

tensively degenerate ground state manifold which is exactly
flat, separated from any excited bands by a large gap and s-
panned by lattice discretizations of the exact LLL wave func-
tions of the continuum,1 which are described by elliptic ✓
functions in the torus geometry that we study. These functions
are evaluated over complex integer z

j

and the fraction of states
in the lattice LLL is simply �. This analytical understanding
of the wavefunctions allows us to exactly generalize a number
of results found in the continuum LLL problem. In particular,
for bosons at filling fraction ⌫ = k/2 with a (k + 1)�body
repulsive on-site interaction, the system’s ground-state wave
function is exactly given by the RR state of level k,28 with a
gap to both particle and hole excitations if the chemical po-
tential is chosen to lie inside the many-body gap. We exploit
this exactness to help confirm the topological character of the
ground states with ranged two-body interactions, the focus of
this work.

The dramatic flattening of the lowest band in this Hamilto-
nian can be seen in Fig. 1. It is important to note that, while
the LLL wavefunctions have the same functional form as in
the continuum and the magnetic length l

B

= 1/
p
2⇡� can

be less than a lattice spacing, the discretization of the LLL
onto the lattice has important physical consequences. The lat-
tice spacing itself introduces a second length scale into the
system, and as a result the properties of a given state depend
upon both the filling fraction ⌫ and the flux density �. Unlike
in the continuum LLL, two Kapit-Mueller systems with the
same interactions but different flux densities can have topo-
logically distinct ground states for the same ⌫; for example,
we were able to find k = 3 RR ground states in bosons at
⌫ = 3/2 for � = 1/4 and � = 1/3, but not for � = 1/2. This
occurs in part because the ground-state manifold of the Kapit-
Mueller Hamiltonian is energetically flat but not “Berry flat”;
the gauge-invariant Berry curvature of the lowest band is posi-
tive definite across the magnetic Brillouin zone, but unlike the
continuum, it is only uniform in the limit � ! 0 (Fig. 2). Sim-
ilarly, while the powers of zn

j

or elliptic ✓ functions are exact
ground states of Eq. (1), the discretization to the lattice breaks
the rotational and continuous magnetic translational symme-
tries of the continuum and they are not naturally orthogonal.
Consequently, Haldane pseudopotentials,29,30 which are one
of the most valuable tools in studying the continuum problem,
cannot be generalized exactly to the lattice case. They can still
be a valuable approximate tool in our model, however; we dis-
cuss an effective formulation of the Haldane pseudopotentials
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0  � < 1, and in this work we study the rational flux densi-
ties � = 1/q with q = 2, 3, 4. The hopping matrix elements of
(1) are infinite ranged, but as they decay as a Gaussian only a
few terms beyond nearest-neighbor hopping need to be kept,
and the Hamiltonian can be readily generalized to finite lat-
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We study this Hamiltonian because its spectrum has an ex-

tensively degenerate ground state manifold which is exactly
flat, separated from any excited bands by a large gap and
spanned by lattice generalizations of the exact lowest Lan-
dau level (LLL) wavefunctions of the continuum, which in
the symmetric gauge can be written as:
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These functions are evaluated over complex integer z
j

and the
fraction of states in the lattice LLL is simply �. On a finite
lattice with periodic boundary conditions, these functions are
replaced by products of elliptic theta functions and Gaussians
but the degeneracy and band density are unchanged. This
form for the wavefunctions allows us to exactly generalize a
number of results found in the continuum LLL problem. In
particular, for bosons at filling fraction ⌫ = k/2 with a (k+1)-
body repulsive on-site interactions, the system’s ground state
wavefunction is exactly given by the Read-Rezayi state of
level k [9], with a gap to both particle and hole excitations
if the chemical potential is chosen to lie inside the many-
body gap. We will exploit this exactness to help confirm the
topological character of the ground state wavefunctions of this
Hamiltonian with ranged 2-body interactions, the focus of this
work.

The dramatic flattening of the lowest band in this Hamilto-
nian can be seen in Fig. 1. It is important to note that, while the
LLL wavefunctions have the same functional form as in the
continuum and the magnetic length l

B

= 1/
p
2⇡� is less than

a lattice spacing, the discretization of the LLL onto the lattice
has important physical consequences. The lattice spacing it-
self introduces a second length scale into the system and as a
result the properties of a given state depend upon both the fill-
ing fraction ⌫ and the flux density �. Unlike in the continuum
LLL, two Kapit-Mueller Hamiltonians with the same interac-
tions but different flux densities can have topologically dis-
tinct ground states for the same ⌫; for example, we were able
to find k = 3 Read-Rezayi ground states in bosons at ⌫ = 3/2
for � = 1/4 and � = 1/3, but not for � = 1/2. This occurs
in part because this ground state manifolds of these Hamilto-
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FIG. 1. Flattening of the lowest band(s) with longer-ranged hopping
on a square lattice. In the top figure we plot the distribution of eigen-
values for the Hofstadter problem– a nearest neighbor hopping model
on a square lattice in a uniform gauge field of strength � quanta per
plaquette, with the magnitude of the hopping matrix element set to
unity. In the bottom figure we plot the same distributions for the
Kapit-Mueller Hamiltonian (1), with the nearest neighbor hopping
matrix element set to unity as well. On an L1 ⇥L2 lattice with mag-
netoperiodic boundary conditions, the lowest �L1L2 states (those
enclosed in the shaded triangle) collapse to an exactly degenerate
lowest Landau level. As � ! 1 the hopping becomes infinite ranged
in this Hamiltonian, as seen in the diverging energy of the highest
band. We only study 1/4  �  1/2 in this work.

nians are energetically flat but not “Berry flat"; the gauge in-
variant Berry curvature of the lowest band is positive definite
across the magnetic Brillouin zone but, unlike the continuum,
it is only uniform in the limit � ! 0. Similarly, while the
powers of zn

j

or elliptic theta functions are exact ground states
of Eq. (1), the discretization to the lattice breaks the rotational
and continuous magnetic translational symmetries of the con-
tinuum and they are not naturally orthogonal. Consequently,
Haldane pseudopotentias [10, 11], which are one of the most
valuable tools in studying the continuum problem, cannot be
generalized exactly to the lattice case. They can still be a valu-
able approximate tool in our model, however; we will discuss
an effective formulation of the Haldane pseudopotentials later
in this work.

- Discretized Landau level wave 
functions span the lowest band!

- Onsite interactions give exact 
model FQH states of bosons!

- Simple single particle 
states not orthogonal

� = 1/2
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FIG. 2. (Color online) Berry curvature, rescaled by a multiplicative factor of 2⇡/q, of the lowest band of the Kapit-Mueller Hamiltonian
with (a) � = 1/2, (b) � = 1/3, (c) � = 1/4, and (d) � = 1/8, in 1/q of the Brillouin zone. The Berry curvature distribution is always
inhomogeneous for finite �, but the variations quickly decay as � ! 0. See color bars for the rapidly changing scale.

ate set of RR wave functions
�� i

RR
↵
, and then diagonalize

the ranged interactions to get a quasidegenerate set of ground
states

�� i

↵
. We then simply compute the total squared over-

lap 1

k+1

P
k+1

i,j=1

��⌦ i

RR| j

↵��2; if this quantity is close to unity,
then the states are essentially identical and should have topo-
logically identical excitations.

Entanglement measures can usually provide more insights
into the topological order of the ground states than the overlap,
which is only a single number that will vanish in the thermo-
dynamic limit. Here we consider the entanglement spectrum
that corresponds to the particle cut.43,44 After dividing the w-
hole system into two sets of particles, A and B, which con-
tains N

A

and N
B

= N
b

� N
A

bosons, respectively, we can
obtain the reduced density operator of part A of the ground s-
tate manifold by ⇢

A

= 1

k+1

Tr
B

(
P

k+1

i=1

| iih i|). The entan-
glement spectrum level is then defined as ⇠

i

= � ln�
i

, where
�
i

is the eigenvalue of ⇢
A

. Due to translational invariance,
each ⇠

i

can also be labeled by the total momentum of part A.
Considering that some particles are traced out artificially, the
particle-cut entanglement spectrum should contain informa-
tion about the quasihole excitations, which is a fingerprint of

topological order in the ground-state manifold.

III. NON-ABELIAN STATES OF DIPOLAR BOSONS

We begin the discussion of our results by considering the
experimentally realistic case of bosons with two-body on-site
and dipolar interactions,
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where i and j are site indices and V is set equal to 1 in this
section. We implicitly assume that |V | ⌧ J

0

so that we need
consider only the lowest band of H

0

in our calculations. We
truncate the dipolar interaction by only considering the near-
est distance between two sites on the torus when evaluating
the dipolar matrix elements (i.e., we do not sum over period-
ic contributions). We then scan the values of U for fixed �
to search for the features described in the previous section,
which tell us when the ground states of (2) are in the same
topological phase as the RR states.

- Non-uniform Berry 
curvature and modified 
excitation spectra



Brief detour: Flat bands due to frustration

Exactly flat bands are easy to find in geometrically frustrated lattice models

These bands are not topological!
- Touching points and thereby no well-defined Chern numbers

H = t1
X

hi,ji

c†i cj

- Example: nearest neighbor hopping on a kagome lattice
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and let |ii, i = 1, . . . , n label the states in the unit cell. In reciprocal space, the single-
particle Hamiltonian (1) is represented by a Hermitian n⇥ n matrix, Hk, which is
diagonalized, Hk| s(k)i = Es(k)| s(k)i, by the states | s(k)i =

P
i a

s
i (k)|ii. The

eigenvalues Es(k), s = 1, . . . , n,k 2 BZ, constitute the band structure of the model.
To characterize the topological properties of a band it is useful to calculate the Chern
number, C = 1

2⇡

R
BZ F

s
12(k)d

2k, which is an integer valued quantity defined for an
isolated band described by the wave functions | s(k)i, via the Berry curvature,
F s
ij(k) = @kiA

s
j(k) � @kjA

s
i (k), which in turn is defined in terms of the Berry

connection As
j(k) = �ih s(k)|@kj | s(k)i. Physically, the Chern number counts the

number of current carrying chiral edge states, and as such gives the quantized Hall
conductivity of a filled band7, �H = C e2

h (and although counterexamples exist8,9,10,

it typically gives �H = C⌫ e2

h for an incompressible state at fractional band filling,
⌫).

Topologically non-trivial bands, with C 6= 0, can appear when the hopping
parameters, tij , are allowed to assume complex values which naturally arises in a
number of systems including spin-orbit coupled materials and systems with e↵ective
gauge fields.

To make the discussion concreted we will now focus on a three band model
describing Rashba spin-orbit coupled particlesa on the kagome lattice2.

Hk = t1

0

@
0 1 + eik1 1 + eik2

1 + e�ik1 0 1 + e�ik3

1 + e�ik2 1 + eik3 0

1
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+ i�1

0

@
0 1 + eik1 �(1 + eik2)

�(1 + e�ik1) 0 1 + e�ik3

1 + e�ik2 �(1 + eik3) 0

1

A (2)

3. Interactions in C = 1 models and the FQH analogy

3.1. Numerically observed states

... A heuristic explaining the occurrence of these states was developed by Läuchli
et. al.25.

aThe e↵ective model only includes spin-polarized particles as can be achieved by a ferromagnetic
substrates or by applying a weak Zeeman field.

Fourier transformed: 

Ek/t1

 “Graphene + a flat band”

But good general knowledge and the same ideas will also be useful for creating 
new topological bands (second lecture)

Flat band understood in terms of localized modes not Wannier 
functions!
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Fractional insulators in higher Chern bands
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An intriguing possibility is that topological flat bands can harbor correlated states with no analogue in contin-
uum Landau levels. Here, we establish a series number of fractional bulk insulating states in bands with higher
Chern number. For fermions we find stable states at ⌫ = 1/(2N+1) and bosonic states at ⌫ = 1/(N+1) in flat
Chen bands with C = N . We find that these states are qualitatively different from quantum Hall multilayers.
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Introduction.— The recent discovery of nearly flat bands
with unit Chern number, C = 1, in itinerant lattice systems
[1–3] has spurred plenty of theoretical excitement [4–19] as
these bands may harbor lattice analogues of fractional quan-
tum Hall states that do not require an external magnetic field
and may potentially persist at very high temperatures.

While flat C = 1 are very similar to continuum Landau
levels, lattice models can harbor bands with higher Chern
number, which as such may host qualitatively new phases
of matter with no analogue in the continuum. Building on
ideas on how to create flat bands with C = 2 [21, 22] two
groups have very recently shown that flat bands with arbitrary
higher Chern number can in fact be systematically created in
multi-layer systems [23, 24]. In this work we study the cru-
cial effect of interactions in original proposal which found flat
C = N bands forming in a tight-binging model describing
spin-orbit coupled particles on quasi-two-dimensional slabs
of pyrochlore including N parallel kagome layers and N � 1
intermediate triangular layers [23]. Intriguingly, there are sev-
eral pyrochlore based material where the conducting electrons
are strongly spin-orbit coupled [25–29].

We acknowledge useful discussions with .... . EJB is sup-
ported by the Alexander von Humboldt foundation.
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- Lattice analogues of Landau levels, almost flat topological 
Chern bands, can form in rather realistic systems with 
short-range hopping only. 

C = 0

C = 1

C = �1

- Topologically protected gapless 
chiral edge states

y

x

Ek/t1

Complex history, recently turned into 
mainstream since

Theory: interactions lead to “fractional Chern insulators” (FCIs)
- Qualitatively new challenges and possibilities arise due to the interplay 
between (band) topology, interactions and the lattice.

... more on this later...



General remarks
The energy dispersion of single band can always be “flattened”

- requires exponentially decaying tail of hopping terms 
- truncations quickly give very flat bands
- does not change the eigenstates, hence no change in topology!

S(L) = ↵L+O(1/L)

The entanglement entropy of Chern insulators obey an area law

- Intuition; entropy simply related to the edge state velocity, which is non-universal

- There exists very weakly entangled Chern insulators!

- Rigorous proof for all Renyi entropies           using Weyl’s perturbation theoremp � 1

But the area law coefficient is arbitrarily tunable 
as long as it is non-zero

J.C. Budich, J. Eisert and E.J. Bergholtz,                                                            
Topological insulators with arbitrarily 
tunable entanglement                                                                                                                                              
Physical Review B 89, 195120 (2014)

The Berry curvature can never be made flat as long as the total number 
of bands is finite (but it can be exponentially flat in the number of bands)



Two more theorems

Any two of the following properties can simultaneously be realized, but never all 
three

L. Chen, T. Mazaheri, A. Seidel, and X. Tang, 
J. Phys. A: Math. Theor. 47, 152001 (2014).

- exactly flat dispersion
- non-zero Chern number
- strictly finite-range hopping

⇠ r�2
In Landau levels, the Wannier functions cannot decay quicker than 

⇠ eikxe�(y�k)2/2(Asymmetric choices possible, e.g.,                                    )

- General statement: exponentially localized Wannier functions if and only if 
the (total) Chern number vanish. See e.g., Brouder et. al. Phys. 

Rev. Lett. 98, 046402 (2007)

- Relevant for influence of local disorder and largely prevents the formation 
of Wigner crystals



Experiments
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Quantum Hall effect in zero field
  - first Chern insulator

20
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Quantum Hall effect (QHE), a quantized version of the Hall effect (1), 
was observed in two-dimensional (2D) electron systems more than 30 
years ago (2, 3). In QHE the Hall resistance, which is the voltage across 
the transverse direction of a conductor divided by the longitudinal cur-
rent, is quantized into plateaus of height h/Ȟe2, with h being Planck's 
constant, e the electron's charge, and Ȟ an integer (2) or a certain fraction 
(3). In these systems, the QHE is a consequence of the formation of 
well-defined Landau levels, and thus only possible in high mobility 
samples and strong external magnetic fields. However, there have been 
numerous proposals to realize QHE without applying any magnetic field 
(4–11). Among these proposals, using the thin film of a magnetic topo-
logical insulator (TI) (6–9, 11), a new class of quantum matter discov-
ered recently (12, 13), is one of the most promising routes. 

Magnetic field induced Landau quantization drives a 2D electron 
system into an insulating phase that is topologically different from the 
vacuum (14, 15); as a consequence, dissipationless states appear at sam-
ple edges. The topologically non-trivial electronic structure can also 
occur in certain 2D insulators with time reversal symmetry (TRS) bro-
ken by current loops (4) or by magnetic ordering (6), requiring neither 
Landau levels nor external magnetic field. This type of QHE induced by 
spontaneous magnetization is considered the quantized version of the 
conventional (non-quantized) anomalous Hall effect (AHE) discovered 
in 1881 (16). The quantized Hall conductance is directly given by a 
topological characteristic of the band structure called the first Chern 
number. Such insulators are called Chern insulators. 

One way to realize a Chern insulator is to start from a time-reversal-
invariant TI. These materials, whose topological properties are induced 
by spin-orbit coupling, were experimentally realized soon after the theo-
retical predictions in both 2D and 3D systems (12, 13). Breaking the 

TRS of a suitable TI (17) by introduc-
ing ferromagnetism can naturally lead 
to the QAH effect (6–9, 11). By tuning 
the Fermi level of the sample around 
the magnetically induced energy gap in 
the density of states, one is expected to 
observe a plateau of Hall conductance 
(ıxy) of e2/h and a vanishing longitudi-
nal conductance (ıxx) even at zero mag-
netic field [figure 14 of (7) and Fig. 1, 
A and B]. 

The QAH effect has been predicted 
to occur by Mn doping of the 2D TI 
realized in HgTe quantum wells (8); 
however, an external magnetic field 
was still required to align the Mn mo-
ments in order to realize the QAH ef-
fect (18). As proposed in (9), due to the 
van Vleck mechanism doping the 
Bi2Te3 family TIs with isovalent 3d 
magnetic ions can lead to a ferromag-
netic insulator ground state, and for thin 
film systems, this will further induce 
QAH effect if the magnetic exchange 
field is perpendicular to the plane and 
overcomes the semiconductor gap. Here 
we investigate thin films of 
Cr0.15(Bi0.1Sb0.9)1.85Te3 (19, 20) with a 
thickness of 5 quintuple layers (QL), 
which are grown on dielectric SrTiO3 
(111) substrates by molecular beam 
epitaxy (MBE) (20, 21) (fig. S1). With 
this composition, the film is nearly 
charge neutral so that the chemical 

potential can be fine-tuned to the electron- or hole-conductive regime by 
a positive or negative gate voltage, respectively, applied on the backside 
of the SrTiO3 substrate (20). The films are manually cut into a Hall bar 
configuration (Fig. 1C) for transport measurements. Varying the width 
(from 50 ȝm to 200 ȝm) and the aspect ratio (from 1:1 to 2:1) of the Hall 
bar does not influence the result. Figure 1D displays a series of meas-
urements, taken at different temperatures, of the Hall resistance (ȡyx) of 
the sample in Fig. 1C, as a function of the magnetic field (ȝ0H). At high 
temperatures, ȡyx exhibits linear magnetic field dependence due to the 
ordinary Hall effect (OHE). The film mobility is ~760 cm2/(Vs), as esti-
mated from the measured longitudinal sheet resistance (ȡxx) and the car-
rier density determined from the OHE. The value is much enhanced 
compared with the samples in our previous study (20, 21), but still much 
lower than that necessary for QHE (2, 3). With decreasing temperature, 
ȡyx develops a hysteresis loop characteristic of the AHE, induced by the 
ferromagnetic order in the film (22). The square-shaped loop with large 
coercivity (Hc = 970 Oersted at 1.5 K) indicates a long-range ferromag-
netic order with out-of-plane magnetic anisotropy. The Curie tempera-
ture is estimated to be ~15 K (Fig. 1D, inset) from the temperature 
dependence of the zero field ȡyx that reflects spontaneous magnetization 
of the film. 

([SHULPHQWDO�2EVHUYDWLRQ�RI�WKH�
4XDQWXP�$QRPDORXV�+DOO�(IIHFW�LQ�D�
0DJQHWLF�7RSRORJLFDO�,QVXODWRU�
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Minghua Guo,1 Kang Li,2 Yunbo Ou,2 Pang Wei,2 Li-Li Wang,2 Zhong-Qing Ji,2 
Yang Feng,1 Shuaihua Ji,1  
Xi Chen,1 Jinfeng Jia,1 Xi Dai,2 Zhong Fang,2 Shou-Cheng Zhang,3 Ke He,2† 
Yayu Wang,1† Li Lu,2 Xu-Cun Ma,2 Qi-Kun Xue1,2† 
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 
Beijing 100084, China. 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, The 
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Stanford, CA 94305–4045, USA. 
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kehe@iphy.ac.cn (K.H.); yayuwang@tsinghua.edu.cn (Y.W.) 

The quantized version of the anomalous Hall effect has been predicted to occur in 
magnetic topological insulators, but the experimental realization has been 
challenging. Here, we report the observation of the quantum anomalous Hall (QAH) 
effect in thin films of Cr-doped (Bi,Sb)2Te3, a magnetic topological insulator. At zero 
magnetic field, the gate-tuned anomalous Hall resistance reaches the predicted 
quantized value of h/e2, accompanied by a considerable drop of the longitudinal 
resistance. Under a strong magnetic field, the longitudinal resistance vanishes 
whereas the Hall resistance remains at the quantized value. The realization of the 
QAH effect may lead to the development of low-power-consumption electronics. 

Figure 2, A and C, shows the magnetic field dependence of ȡyx and 
ȡxx, respectively, measured at T = 30 mK at different bottom-gate voltag-
es (Vgs). The shape and coercivity of the ȡyx hysteresis loops (Fig. 2A) 
vary little with Vg, thanks to the robust ferromagnetism probably mediat-
ed by the van Vleck mechanism (9, 20). In the magnetized states, ȡyx is 
nearly independent of the magnetic field, suggesting perfect ferromag-
netic ordering and charge neutrality of the sample. On the other hand, 
the AH resistance (height of the loops) changes dramatically with Vg, 

/ http://www.sciencemag.org/content/early/recent / 14 March 2013 / Page 1/ 10.1126/science.1234414 
 

 o
n 

M
ar

ch
 3

1,
 2

01
3

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

Claimed observation in March 2013.
Followup experiments more convincing, see arXiv: 1406.7450

and http://www.condmatjournalclub.org/?p=2458

http://arxiv.org/abs/1406.7450
http://arxiv.org/abs/1406.7450
http://www.condmatjournalclub.org/?p=2458
http://www.condmatjournalclub.org/?p=2458


Hofstadter Butterfly (partially) 
observed in several systems (2013)
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Cloning of Dirac fermions in graphene superlattices
L. A. Ponomarenko1, R. V. Gorbachev2, G. L. Yu1, D. C. Elias1, R. Jalil2, A. A. Patel3, A. Mishchenko1, A. S. Mayorov1, C. R. Woods1,
J. R. Wallbank3, M. Mucha-Kruczynski3, B. A. Piot4, M. Potemski4, I. V. Grigorieva1, K. S. Novoselov1, F. Guinea5, V. I. Fal’ko3

& A. K. Geim1,2

Superlattices have attracted great interest because their use may
make it possible to modify the spectra of two-dimensional electron
systems and, ultimately, create materials with tailored electronic
properties1–8. In previous studies (see, for example, refs 1–8), it
proved difficult to realize superlattices with short periodicities
and weak disorder, and most of their observed features could be
explained in terms of cyclotron orbits commensurate with the
superlattice1–4. Evidence for the formation of superlattice mini-
bands (forming a fractal spectrum known as Hofstadter’s butterfly9)
has been limited to the observation of new low-field oscillations5

and an internal structure within Landau levels6–8. Here we report
transport properties of graphene placed on a boron nitride sub-
strate and accurately aligned along its crystallographic directions.
The substrate’s moiré potential10–12 acts as a superlattice and leads
to profound changes in the graphene’s electronic spectrum. Second-
generation Dirac points13–22 appear as pronounced peaks in resisti-
vity, accompanied by reversal of the Hall effect. The latter indicates
that the effective sign of the charge carriers changes within graphene’s
conduction and valence bands. Strong magnetic fields lead to Zak-
type cloning23 of the third generation of Dirac points, which are
observed as numerous neutrality points in fields where a unit fraction
of the flux quantum pierces the superlattice unit cell. Graphene
superlattices such as this one provide a way of studying the rich
physics expected in incommensurable quantum systems7–9,22–24 and
illustrate the possibility of controllably modifying the electronic spec-
tra of two-dimensional atomic crystals by varying their crystal-
lographic alignment within van der Waals heterostuctures25.

Since the first observation of Weiss oscillations1,2, two-dimensional
electronic systems subjected to a periodic potential have been studied in
great detail3–8. The advent of graphene rapidly sparked interest in gra-
phene superlattices13–22. The principal novelty of such superlattices is
the Dirac-like spectrum and the fact that charge carriers are not buried
deep under the surface, which allows a relatively strong superlattice
potential on the nanometre scale. One promising method of making
nanoscale graphene superlattices is the use of a potential induced by
another crystal. For example, graphene placed on top of graphite or
hexagonal boron nitride (hBN) exhibits a moiré pattern10–12,26, and the
graphene’s tunnelling density of states becomes strongly modified12,26,
indicating the formation of superlattice minibands. This spectral recon-
struction occurs near the edges of the superlattice Brillouin zone (SBZ)
that are characterized12,22 by wavevector G 5 4p/

ffiffiffi
3
p

D and energy
ES 5 BvFG/2 (D is the superlattice period, vF is graphene’s Fermi velo-
city and B is Planck’s constant divided by 2p).

To observe moiré minibands in transport properties, graphene has
to be doped so that the Fermi energy reaches the reconstructed part of
the spectrum. This imposes severe constraints on the misalignment
angle, h, of the graphene relative to the hBN substrate. Indeed, D is
determined from h and the 1.8% difference between the two lattice
constants12. In the case of perfect alignment (h 5 0), D has a maximum
value of ,13 6 1 nm (ref. 12), which yields ES < 0.2 eV. This energy

scale corresponds to a carrier density of n < 3 3 1012 cm22, which is
achievable by field-effect doping. However, misorientation by only 2u
decreases D by a factor of two12, and fourfold greater values of n are
necessary for the Fermi energy to reach the edges of the first SBZ. In
practice, studies of the superlattice spectrum in monolayer graphene
require h # 1u (Methods).

Here we study high-mobility encapsulated graphene devices that are
similar to those reported previously27 but which involve a new element:
crystallographic alignment between the graphene and the hBN with a
precision of ,1u. Figure 1 shows typical behaviour of longitudinal and
Hall resistivities (rxx and rxy, respectively) for our aligned devices.
There is the standard peak in rxx at n 5 0, graphene’s main neutrality
point. In addition, two other peaks appear symmetrically, one on either
side of the main neutrality point, at high doping, n 5 6nS. At low
temperatures (T), the secondary peak on the hole side is stronger than
that at the main neutrality point, whereas that on the electron side is
,10 times weaker. The reversal in sign of rxy (Fig. 1b) cannot be
explained by additional scattering and proves that hole-like and elec-
tron-like carriers appear in the conduction and, respectively, valence
bands of graphene. We attribute the extra neutrality points to the
superlattice potential induced by the hBN, which results in minibands
featuring isolated secondary Dirac points (Fig. 1a, inset). This inter-
pretation agrees with theory12–22 and the tunnelling features reported in
ref. 12, including the fact that those were stronger in the valence band.

Near the main neutrality point, the aligned devices have transport
characteristics typical for graphene on hBN27,28. The conductivity
s(n) 5 1/rxx varies linearly with n and can therefore be described in
terms of constant mobility, m. For the reported devices, we find that
m < (20–80) 3 103 cm2 V21 s21 for jnj. 1011 cm22. Around the sec-
ondary neutrality points, s depends linearly on n 2 nS. At the hole-side
secondary neutrality point (hSNP), at low temperature m is practically
the same as at the main neutrality point, whereas near the electron-
side secondary neutrality point we find even higher values, m < (30–
100) 3 103 cm2 V21 s21. However, at the main and secondary neutrality
points the T dependences of both m and the minimum conductivities are
very different. This is discussed in Supplementary Information, section
1, and here we note only that the observed functions s(T) do not support
the idea of major energy gaps being induced by the superlattice at the
cloned secondary Dirac points19–22 (Fig. 1a, inset). Furthermore, follow-
ing the approach described in ref. 29, we analysed the thermal broad-
ening of the peaks in rxx (Supplementary Information, section 2). The
analysis proves that the spectrum at the secondary neutrality points is
linear, that is, Dirac-like, in agreement with theory13–22.

Figure 2 shows the evolution of rxx(n) with increasing perpendicular
magnetic field, B. Near the main Dirac point, we observe the standard30

quantum Hall effect (QHE) for graphene, with plateaux in rxy and zeros
in rxx at filling factors n ; nw0/B 5 62, 66, 610, … where w0 is the flux
quantum. Fan diagrams around the secondary Dirac points are dif-
ferent (Fig. 2). The resistance peak of the hSNP first broadens with
increasing B and then splits into two maxima. The maxima correspond

1School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK. 2Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK. 3Physics
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Hofstadter’s butterfly and the fractal quantum Hall
effect in moiré superlattices
C. R. Dean1, L. Wang2, P. Maher3, C. Forsythe3, F. Ghahari3, Y. Gao2, J. Katoch4, M. Ishigami4, P. Moon5, M. Koshino5,
T. Taniguchi6, K. Watanabe6, K. L. Shepard7, J. Hone2 & P. Kim3

Electrons moving through a spatially periodic lattice potential
develop a quantized energy spectrum consisting of discrete Bloch
bands. In two dimensions, electrons moving through a magnetic
field also develop a quantized energy spectrum, consisting of highly
degenerate Landau energy levels. When subject to both a magnetic
field and a periodic electrostatic potential, two-dimensional systems
of electrons exhibit a self-similar recursive energy spectrum1. Known
as Hofstadter’s butterfly, this complex spectrum results from an
interplay between the characteristic lengths associated with the two
quantizing fields1–10, and is one of the first quantum fractals discov-
ered in physics. In the decades since its prediction, experimental
attempts to study this effect have been limited by difficulties in recon-
ciling the two length scales. Typical atomic lattices (with periodicities
of less than one nanometre) require unfeasibly large magnetic fields
to reach the commensurability condition, and in artificially engi-
neered structures (with periodicities greater than about 100 nano-
metres) the corresponding fields are too small to overcome disorder
completely11–17. Here we demonstrate that moiré superlattices arising
in bilayer graphene coupled to hexagonal boron nitride provide a
periodic modulation with ideal length scales of the order of ten nano-
metres, enabling unprecedented experimental access to the fractal
spectrum. We confirm that quantum Hall features associated with
the fractal gaps are described by two integer topological quantum
numbers, and report evidence of their recursive structure. Observa-
tion of a Hofstadter spectrum in bilayer graphene means that it is
possible to investigate emergent behaviour within a fractal energy
landscape in a system with tunable internal degrees of freedom.

The total number of electron states per area of a completely filled
Bloch band is n0 5 1/A, where A is the area of the unit cell of the periodic
potential. In a magnetic field, B, the number of states per area of each
filled Landau level is given by B/w0, where w0 5 h/e is the magnetic flux
quantum (h, Planck’s constant; e, magnitude of the electron charge).
The quantum description of electrons subjected simultaneously to both
a periodic electric field and a magnetic field can be simply parameter-
ized by the dimensionless ratio w/w0, where w 5 BA is the magnetic flux
per unit cell. The general solution, however, exhibits a rich complexity
due to the incommensurate periodicities of the Bloch and Landau
states18. For commensurate fields, corresponding to rational values of
w/w0 5 p/q, where p and q are co-prime integers, the single-particle
Bloch band splits into q subbands1 (beginning with the Landau level
description, it can be shown that, equivalently, the energy diagram is
parameterized by wo/w 5 q/p such that at these same rational values
each Landau level splits into p subbands2). This results in a quasi-
continuous distribution of incommensurate quantum states with a
self-similar recursive structure, yielding a butterfly-like fractal energy
diagram called the Hofstadter buttefly1 (Supplementary Information).

Important insight into this system came from consideration of the
density of charge carriers, n, required to fill each fractal subband2.

Replotting the Hofstadter energy spectrum as integrated density versus
field shows that all spectral gaps are constrained to linear trajectories in
the density–field diagram (Wannier diagram). This can be described
by a simple Diophantine relation

n=noð Þ~t w=woð Þzs ð1Þ

where n/no and w/wo are the normalized carrier density and magnetic flux,
respectively, and s and t are both integer valued. Here n/no represents the
Bloch band filling fraction, which is distinct from the usual Landau level
filling fraction, n 5 nw0/B (the two are related by the normalized flux, that
is, n/no 5 nw/wo). The physical significance of the quantum numbers s
and t became fully apparent with the discovery of the integer quantum
Hall effect19 (QHE), after which it was shown that the Hall conductivity
associated with each minigap in the fractal spectrum is quantized accord-
ing to the relation sxy 5 te2/h (refs 3, 4). The second quantum number, s,
physically corresponds to the Bloch band filling index in the fractal
spectrum5. This formalism suggests several unique and unambiguous
experimental signatures associated with the Hofstadter energy spectrum
that are distinct from the conventional QHE. First, the Hall conductance
can vary non-monotonically and can even fluctuate in sign. Second, the
Hall conductance plateaux, together with vanishing longitudinal resist-
ance, can appear at non-integer Landau level filling fractions. Third, the
Hall conductance plateaux remain quantized in integral multiples of e2/h.
However, the quantization integer is not directly associated with the usual
Landau level filling fraction. Instead, quantization is equal to the slope of
the gap trajectory in the n/no–w/wo Wannier diagram, in accordance with
the Diophantine equation (equation (1)).

Minigaps within the fractal energy spectrum become significant only
once the magnetic length (lB~

ffiffiffiffiffiffiffiffiffiffi
B=eB

p
; B, Planck’s constant divided by

2p), which characterizes the cyclotron motion, is of the same order as
the wavelength of the periodic potential, which characterizes the Bloch
waves. For usual crystal lattices, where the interatomic spacing is a few
ångströms, the necessary magnetic field is unfeasibly large, in excess of
10,000 T. The main experimental effort therefore has been to litho-
graphically define artificial superlattices11–17 with unit-cell dimensions
of order tens of nanometres, so that the critical magnetic field remains
small enough to be achievable in the lab yet still large enough that
the QHE is fully resolved without being smeared out by disorder.
Fabricating the optimally sized periodic lattice while maintaining
coherent registry over the full device and without introducing substan-
tial disorder has proven to be a formidable technical challenge. Pat-
terned GaAs/AlGaAs heterostructures with ,100-nm-period gates
provided the first experimental support for the predictions of a
Hofstadter spectrum14–16. However, limited ability to tune the carrier
density or reach the fully developed QHE regime in these samples has
made it difficult to map out the complete spectrum. Although similar
concepts have been pursued in non-solid-state model systems20,21, the
rich physics of the Hofstadter spectrum remains largely unexplored.

1Department of Physics, The City College of New York, New York, New York 10031, USA. 2Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA. 3Department of
Physics, Columbia University, New York, New York 10027, USA. 4Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816-2385, USA. 5Department
of Physics, Tohoku University, Sendai 980-8578, Japan. 6National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan. 7Department of Electrical Engineering, Columbia University, New
York, New York 10027, USA.
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Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices

M. Aidelsburger,1,2 M. Atala,1,2 M. Lohse,1,2 J. T. Barreiro,1,2 B. Paredes,3 and I. Bloch1,2

1Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, 80799 München, Germany
2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

3Instituto de Fı́sica Teórica CSIC/UAM C /Nicolás Cabrera, 13-15 Cantoblanco, 28049 Madrid, Spain
(Received 1 August 2013; published 28 October 2013)

We demonstrate the experimental implementation of an optical lattice that allows for the generation of

large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using laser-assisted

tunneling in a tilted optical potential, we engineer spatially dependent complex tunneling amplitudes.

Thereby, atoms hopping in the lattice accumulate a phase shift equivalent to the Aharonov-Bohm phase of

charged particles in a magnetic field. We determine the local distribution of fluxes through the observation

of cyclotron orbits of the atoms on lattice plaquettes, showing that the system is described by the

Hofstadter model. Furthermore, we show that for two atomic spin states with opposite magnetic moments,

our system naturally realizes the time-reversal-symmetric Hamiltonian underlying the quantum spin Hall

effect; i.e., two different spin components experience opposite directions of the magnetic field.

DOI: 10.1103/PhysRevLett.111.185301 PACS numbers: 67.85.!d, 03.65.Vf, 03.75.Lm, 73.20.!r

Ultracold atoms in optical lattices constitute a unique
experimental setting to study condensed matter
Hamiltonians in a clean and well-controlled environment
[1], even in regimes not accessible to typical condensed
matter systems [2]. Especially intriguing is their promising
potential to realize and probe topological phases of matter,
for example, by utilizing the newly developed quantum
optical high-resolution detection and manipulation tech-
niques [3,4]. One compelling possibility in this direction is
the quantum simulation of electrons moving in a periodic
potential exposed to a large magnetic field, described by
the Hofstadter-Harper Hamiltonian [5,6]. For a filled band
of fermions, this model realizes the paradigmatic example
of a topological insulator that breaks time-reversal
symmetry—the quantum Hall insulator. Moreover, the
atomic realization of time-reversal-symmetric topological
insulators based on the quantum spin Hall effect [7] prom-
ises new insights for spintronic applications.

The direct quantum simulation of orbital magnetism in
ultracold quantumgases is, however, hindered by the charge
neutrality of atoms, which prevents them from experiencing
a Lorentz force. Overcoming this limitation through the
engineering of synthetic gauge potentials is currently a
major topic in cold-atom research. Artificialmagnetic fields
were first accomplished using the Coriolis force in a rotat-
ing atomic gas [8,9] and later by inducing Berry’s phases
through the application of Raman lasers [10,11]. Recently,
staggered magnetic fields in optical lattices were achieved
using laser-induced tunneling in superlattice potentials [12]
or through dynamical shaking [13]. In one dimension,
tunable gauge fields have been implemented in an effective
‘‘Zeeman lattice’’ [14] and using periodic driving [15].
Furthermore, the free-space spin Hall effect was observed
usingRaman dressing [16].Despite intense research efforts,

2D optical lattices featuring topological many-body phases
have so far been beyond the reach of experiments.
In this Letter, we demonstrate the first experimental

realization of an optical lattice that allows for the genera-
tion of large tunable homogeneous artificial magnetic
fields. The technique is based on our previous work on
staggered magnetic fields [12]. The main idea is closely
related to early proposals by Jaksch and Zoller [17] and
subsequent work [18,19]. However, it does not rely on the
internal structure of the atom, which makes it applicable to
a larger variety of atomic species, including fermionic
atoms like 6Li and 40K. We use laser-assisted tunneling
in a tilted optical lattice through periodic driving with a
pair of far-detuned running-wave beams [20,21]. In con-
trast to techniques based on near-resonant laser beams,
heating of the atomic cloud due to spontaneous emission
is negligible [22]. The position dependence of the on-site
modulation introduced by the running-wave beams leads to
a spatially dependent complex tunneling amplitude.
Therefore, an atom hopping around a closed loop acquires
a nontrivial phase, which mimics an Aharonov-Bohm
phase. In our setup, we realize a uniform effective flux of
! ¼ !=2 per plaquette, whose value is fully tunable. We
study resonant laser-assisted tunneling in the tilted optical
potential and reveal the local distribution of fluxes by
partitioning the lattice into isolated four-site square pla-
quettes. Furthermore, we show that for two spin states with
opposite magnetic moments j"i and j#i, our coupling
scheme directly gives rise to a non-Abelian SU(2) gauge
field that results in opposite magnetic fields for j"i and j#i
particles. In the presence of such a gauge field, the tight-
binding Hamiltonian is time-reversal symmetric and cor-
responds precisely to the one underlying the quantum spin
Hall effect [7,23].
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Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices

Hirokazu Miyake, Georgios A. Siviloglou, Colin J. Kennedy, William Cody Burton, and Wolfgang Ketterle
Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 6 August 2013; published 28 October 2013; publisher error corrected 28 October 2013)

We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using

laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients.

This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted

tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band

structure of this Hamiltonian should display Hofstadter’s butterfly. For fermions, this scheme should

realize the quantum Hall effect and chiral edge states.

DOI: 10.1103/PhysRevLett.111.185302 PACS numbers: 67.85.!d, 03.65.Vf, 03.75.Lm

Systems of charged particles in magnetic fields have led
to many discoveries in science—including both the integer
[1] and the fractional [2,3] quantum Hall effects—and have
become important paradigms of quantummany-body phys-
ics [4]. Generalizations have led to important developments
in condensed matter physics, including topological insula-
tors [5,6], fractional Chern insulators [7,8], and Majorana
fermions [9,10]. At high magnetic fields, exotic new phe-
nomena like the fractal energy spectrum of Hofstadter’s
butterfly [11] are predicted to emerge. Its direct observation
would require an inaccessibly high magnetic field of one
flux quantum per unit cell—corresponding to"10000 T in
a traditional condensed matter system. Recently, some
aspects of Hofstadter’s butterfly were addressed using
superlattices in high magnetic fields [12–15].

Neutral atoms provide an excellent platform to simulate
the physics of charged particles in magnetic fields free
from disorder. Rotating quantum gases realize the limit
of weak magnetic fields, exploiting the equivalence
between the Lorentz force and the Coriolis force. The
observed vortex lattices [16,17] are analogous to magnetic
flux lattices. A more general method to create synthetic
magnetic fields for neutral atoms is based on the insight
that vector potentials introduce spatially varying phases !
into the wave function when the particle propagates ! ¼H
A $ ds=@, where the charge is included in the vector

potential. For neutral atoms, such a phase structure can
be realized through Berry phases, when two hyperfine
states of the atom are coupled by Raman lasers with
inhomogeneous intensity or detuning [18,19]. This concept
of coupling of two or several internal states to realize
synthetic magnetic fields was also suggested in optical
lattice geometries [20–22]. Here, the crucial element is
laser-assisted hopping between neighboring sites which
imprints the phase of the laser into the atomic wave func-
tion. Alternatively, instead of using Raman laser beams,
lattice modulation techniques can generate complex tun-
neling matrix elements in optical lattices [23,24].
Experimentally, these techniques have been used so far

only to realize staggered magnetic fields [24,25]. In the
Munich experiment, the two internal states in the proposed
schemes [20,22] were replaced by doubling the unit cell of
the optical lattice using superlattices [25].
So far, all proposals for generating high magnetic fields

are based on the coupling of different internal states. For
alkali atoms, this involves different hyperfine states [20].
Spin flips between such states require near-resonant light
which heats up the sample by spontaneous emission. At
least for staggered fluxes, the realizations with lattice
shaking and superlattices demonstrate that internal struc-
ture of the atom is not essential. Here, we suggest and
implement a scheme which realizes the Harper
Hamiltonian [26], a lattice model for charged particles in
magnetic fields, the spectrum of which is the famous
Hofstadter’s butterfly [11]. Our scheme requires only far-
off-resonant lasers and a single internal state. It is an
extension of a scheme suggested by Kolovsky [27], which
was shown to be limited to inhomogeneous fields [28], but
as we show here, an additional momentum transfer in the
laser-assisted hopping process provides a simple solution.
While this work was in progress [29], an identical scheme
was proposed by the Munich group [30]. In this Letter, we
describe the features and implementation of this scheme,
and characterize the laser-assisted hopping process.
We start with the simple Hamiltonian for noninteracting

particles in a 2D cubic lattice

H ¼ !
X

m;n

ðJxâymþ1;nâm;n þ Jyâ
y
m;nþ1âm;n þ H:c:Þ; (1)

where JxðyÞ describes tunneling in the x (y) direction and

âym;n (âm;n) is the creation (annihilation) operator of a
particle at lattice site (m, n). Tunneling in the x direction
is then suppressed by a linear tilt of energy ! per lattice
site, where!=h is the Bloch oscillation frequency. This tilt
can be created with magnetic field gradients, gravity, or an
ac Stark shift gradient. Resonant tunneling is restored with
two far-detuned Raman beams of two-photon Rabi fre-
quency ", frequency detuning "! ¼ !1 !!2, and mo-
mentum transfer "k ¼ k1 ! k2, as shown in Fig. 1(a).
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...and in optical lattices 

First key steps toward the FCI 
regime



Haldane model engineered in cold atom systems
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Experimental realisation of the topological Haldane model

Gregor Jotzu, Michael Messer, Rémi Desbuquois, Martin Lebrat,
Thomas Uehlinger, Daniel Greif & Tilman Esslinger

Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
(Dated: July 1, 2014)

PACS numbers: 03.75.Ss, 67.85.Lm, 03.65.Vf, 73.43.-f, 73.43.Nq, 71.10.Fd, 73.22.Pr
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Huge experimental progress -- 
topological flat bands to come?



 Fractional Chern insulators
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Useful references: 

S. A. Parameswaran, R. Roy & S. L. Sondhi
Fractional Quantum Hall Physics in Topological Flat Bands
C. R. Physique 14, 816 (2013) [arXiv:1302.6606]

E. J. Bergholtz & Z. Liu
Topological Flat Band Models and Fractional Chern Insulators
Int. J. Mod. Phys. B 27, 1330017 (2013) [arXiv:1308.0343]

http://arxiv.org/find/cond-mat/1/au:+Parameswaran_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Parameswaran_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Roy_R/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Roy_R/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sondhi_S/0/1/0/all/0/1
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http://arxiv.org/abs/1302.6606
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http://arxiv.org/find/cond-mat/1/au:+Liu_Z/0/1/0/all/0/1
http://arxiv.org/abs/1308.0343
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Quick recap: Chern bands vs. Landau levels

Cold 2D electrons in a strong 
magnetic field. 

B

Flat bands with any Chern number, C=N, 
possible (N chiral edge states). Flat Landau bands with C=1 (one 

chiral edge state).

) �E ⇠ 1K

Interaction scale set by the 
magnetic length

€ 

Rxx

€ 

(h /e2)

€ 

Rxy

Experiments 
+ theory!

t1,�1
Lattice models with complex 
hopping parameters: e.g. spin-
orbit coupled systems. Time-
reversal broken explicitly or 
spontaneously. 

No need for strong magnetic fields!

Experiments hopefully to come
- Solid state, oxide interfaces?
- Cold atoms?

) �E ⇠ 500K

Interaction scale set by lattice 
spacing                        !? (very optimistic estimate... :))



Methods: how to attack the problem of a partially 
flat Chern band?

Extremely hard, non-perturbative 
problem with no generically 
applicable cure.

But, luckily FQH and FCI states have very short correlation lengths
- Exact diagonalization is often appropriate in combination with analytical insights

The problem is also very well suited for entanglement based methods
- Finite-dimensional Hamiltonian without band projection, hence a local 
Hamiltonian is a good starting point.
- DMRG/MPS methods works very well See e.g., Frank’s talk

- Ultimately also 2d tensor network approaches may be applicable

Analytical approaches, CFT, wave functions, low-energy Chern Simons theory etc 
provide useful reference points

- Typically not enough to gain insights beyond the continuum quantum Hall regime

GS and low energy excitations?

?
exp # states



End of first lecture
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