Replica exchange molecular dynamics optimization of tensor network states for quantum many-body systems

Wenyuan Liu,^{1, 2} Chao Wang,^{1, 2} Yanbin Li,¹ Yuyang Lao,¹ Yongjian Han,^{1, 2, *} Guang-Can Guo,^{1, 2} and Lixin He^{1, 2, †}

¹Key Laboratory of Quantum Information, University of Science and Technology of China,

Hefei, Anhui, 230026, People's Republic of China

²Synergetic Innovation Center of Quantum Information and Quantum Physics,

University of Science and Technology of China, Hefei, 230026, China

(Dated: July 3, 2014)

Variational quantum Monte Carlo (QMC) method with tensor network states (TNS) has been proved a powerful algorithm for simulating quantum many-body systems. However, because the ground state energy is a highly non-linear function of the tensors, it is easy to be trapped into local minima when optimizing the TNS of the simulated physical systems. To overcome this difficulty, we introduce a replica-exchange molecular dynamics optimization algorithm to obtained the TNS ground states, based on the variational QMC scheme, by mapping the TNS to a classical dynamical system. The method is expected to effectively avoid local minima. We make benchmark tests on a 1D Hubbard model based on matrix product states (MPS) and a Heisenberg J_1 - J_2 model on square lattice based on string bond states (SBS). The results show that the optimization method is robust and efficient compared to the exist results.

PACS numbers: 71.10.-w, 75.10.Jm, 03.67.-a, 02.70.-c

* Electronic address: smhan@ustc.edu.cn

[†] Electronic address: helx@ustc.edu.cn