Carrier-envelope phase effects on the strong-field photoemission of electrons from sharp metallic tips

Petra Groß, Jan Vogelsang, Björn Piglosiewicz, Slawa Schmidt, Doo Jae Park, and Christoph Lienau
Institut für Physik, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
petra.gross@uni-oldenburg.de / www.uni-oldenburg.de/uno

Cristian Manzoni, Paolo Farinello, and Giulio Cerullo
IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Italy
Outline

- Strong-field phenomena around metallic nanostructures:
 - Emission
 - Acceleration in the near field
- Strong-field regime
- Methods: experimental and numerical
- Experimental observation of CEP-effect on acceleration
- New control mechanisms for electron motion
Strong-field phenomena

Observation of strong-field effects with metal nanostructures:

- High harmonic generation
- Attosecond pulses and x-ray radiation
- **Electron emission from metal nanostructures**

MPI (Multi-Photon Ionisation)

ATI (Above-Threshold Ionisation)

Strong-field Photoemission

Strong-field phenomena

Characterization: Keldysh parameter

Transition ATI \Rightarrow Strong-field photoemission

$$\gamma = \frac{\omega \sqrt{2m_e \Phi}}{e \cdot f \cdot E_0}$$

$\gamma < 1$

L.V. Keldysh, Soviet Physics Jetp-Ussr 20, 1307 (1965)
Atomic system vs. nanostructures

Emission: Similar to atomic systems

- New phenomena discovered:
 - High harmonic generation
 - Attosecond generation

Difference: Electron motion in the near field

- New phenomena in strong near field:
 - Suppression of quiver motion
 - \(\Rightarrow \) Sub-cycle electrons

- CEP control required
Atomic system vs. nanostructures

Characterization: Spatial adiabaticity parameter

\[\delta = \frac{l_F}{l_q} \quad \text{and} \quad l_q = \frac{e \cdot f \cdot E_0}{m_e \omega^2} \]

Sharp metal structures \(\Rightarrow \) short near-field decay length

\[\delta < 1 \]

Acceleration \(\propto \) gradient of potential

Four regimes of photoemission
Four regimes of photoemission
Four regimes of photoemission

\[\delta > 1, \quad \gamma < 1 \]

\[\delta < 1, \quad \gamma < 1 \]

\[\delta > 1, \quad \gamma > 1 \]

\[\delta < 1, \quad \gamma > 1 \]
Regime: $\gamma < 1$, $\delta < 1$

Emergence of a pronounced plateau \Rightarrow Signature of strong-field acceleration

Gold tip

30-fs-pulses at 1.4 μm

Counts (e⁻/pulse/eV) vs. Kinetic energy (eV)

- 0.08 nJ
- 0.1 nJ
- 0.14 nJ
- 0.2 nJ
- 0.4 nJ
- 0.6 nJ

Gold tip

$E_{loc} \leq 25$ V/nm, $f = 9$ at 0.6 nJ

$E_{loc} \leq 9.3$ V/nm, $f = 9$ at 0.08 nJ

Acceleration
Regime: $\gamma<1, \delta<1$

- Strong-field-induced tunneling
- Acceleration within one half cycle
 \Rightarrow Sub-cycle electrons form a plateau

New sub-cycle regime
 \Rightarrow unique to nanostructures

- Recollisions are suppressed
- Electrons follow field lines
 \Rightarrow Fundamentally different electron dynamics

First experiments in sub-cycle regime performed only recently:
Angle-resolved energy spectra

Emission cone narrowing of the fastest electrons from $\geq 30^\circ$ down to 12°

Control of electron motion

Steering effect of the fastest electrons
⇒ a new control handle via the spatial field distribution

Control via the temporal field distribution, too?
⇒ study the influence of carrier-envelope phase
Experimental setup

- Ti:Sapphire regenerative amplifier
- NOPA 30 fs 1000-1500 nm
- Cassegrain objective
- Gold taper
- Faraday cage
- PES
Experimental setup

- Center wavelength: $1.65 \, \mu m$
- Pulse duration: $14 \, fs$

Source:
Experimental setup

Experimental setup

Experimental setup

- Passive CEP stability: <50 mrad over 20 min
- CEP control: 8.8\(\pi\) linear shift

Nanotips for electron emission

Field enhancement: $f = 9$

Decay length: $L_f = 1.7$ nm

Localized electron emission

Numerical model

Spatio-temporal electric field distribution

\[
\vec{E}(\vec{r}, t) = E_0(\vec{r}) \exp(-2\sqrt{\ln 2}t^2 / \tau^2) \cos(\omega t)
\]

Fowler-Nordheim tunneling describes emission probability

\[
J(t) \propto \Theta(E(t)) |E(t)|^2 \exp\left(\frac{-4\sqrt{2m\Phi}^{3/2}}{3\hbar e|E(t)|}\right)
\]

G. Herink \textit{et al.}, Nature \textbf{483}, 190 (2012)
Numerical model

Classical equation of motion for the released electron, in temporally and spatially varying electric field

\[m \ddot{r} = -e \vec{E}(\vec{r}, t) \]

Rescattering with the tip: 100% elastic collisions

Electron motion per emission site and time \(\Rightarrow \) (angle-resolved) kinetic energy spectra
Numerical model

Classical equation of motion for the released electron, in temporally and spatially varying electric field

\[m \ddot{\vec{r}} = -e \vec{E}(\vec{r}, t) \]

Consider charged particle effects

⇒ Requires fully three-dimensional trajectory calculations

B. Piglosiewicz et al., Nature Photon. 9, 37 (2014)
B. Piglosiewicz et al., Quantum Matter (2014)
CEP dependence: expectation

B. Piglosiewicz et al., Nature Photon. 9, 37 (2014)
CEP dependence: measurement

B. Piglosiewicz et al., Nature Photon. 9, 37 (2014)
First observation of CEP effect from metallic nanostructures in strong-field regime

New control mechanism on sub-femtosecond electron motion

B. Piglosiewicz et al., Nature Photon. 9, 37 (2014)
New electron source

1. Controlled emission
 ⇒ few-nm area

2. Spatial motion control
 ⇒ order of nanometers

3. Temporal control
 ⇒ sub-femtosecond

⇒ A new class of electron source
⇒ Towards attosecond control and electron streaking
Summary

Strong-field emission and acceleration of electrons: unique to nanostructures

Control of electron motion

• Steering along field lines:
 Control via nanostructure shape

• Velocity change through the laser field phase:
 Control via temporal field

We acknowledge funding from:

Deutsche Forschungsgemeinschaft (DFG)

Hanse-Wissenschaftskolleg Institute for Advanced Study