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The curvaton scenario

An alternative model to single-field inflation for the origin of structures

The inflaton drives inflation while the curvaton generates curvature perturbations (hence
the name)

This “liberates” the inflaton, at the expense of making inflation less predictive

We now have two light degrees of freedom during inflation, sensitive to two potentials and
initial conditions.

The curvaton is a light field which
|. has a subdominant energy density during inflation
2. Islong lived (compared to the inflaton)
3. Generates the primordial curvature perturbation

* We will often drop assumption 3, and consider the mixed inflaton-curvaton scenario



Curvaton phenomenology

®  Adding one extra field allows for interesting new phenomenology which single-field inflation
cannot generate

|. Large local non-Gaussianity (breaking the Maldacena consistency relation between the
squeezed bispectrum and the power spectrums spectral index)

2. lIsocurvature perturbations - the relative energy density of different components (e.g.
radiation and cold dark matter) is a function of position on all scales

3. A suppressed tensor-to-scalar ratio r
Observations don't (currently) require a second field, but high energy theories might

A brief history: The usual suspects from 2001: Enqgvist and Sloth, Lyth and Wands (who
created the name and got ~900 citations), Moroi and Takahashi.

Plus two related older papers, Linde and Mukhanov (1996), Mollerach (1990)



Related models

Several other models predict essentially identical phenomenology (local non-Gaussianity, isocurvature
perturbations and suppressed tensor perturbations)

For example
|. Modulated reheating (the efficiency of reheating is a function of position)
2. Inhomogeneous end of inflation (inflation ends later in some positions)
3. Models with a subdominant field curving the trajectory during inflation

This is not a coincidence, all models are tracking the conversion of an initial isocurvature perturbation
(corresponding to a light and subdominant field) into the adiabatic perturbation after inflation

Wait for the next two talks by Ewan and Joe
The models are physically different, and detailed predictions for the simplest realisations do vary

However the curvaton is the earliest and perhaps the simplest to study of these cases, extremely
popular



Planck measured power spectrum
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-¢ values are plotted at 2, 3, 4,5, 6,7, 8,9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Looks complicated, but all this can be fit by a primordial power law spectrum
with just two input parameters

The range of scales probed is 2500/2=103=e’ - corresponds to about 7
efoldings of inflation



E n O rm O U S data compression

Planck observes ~107 pixels in the CMB sky

Reduced to ~103 Cl

Further reduced to A and ns-|

Can only be justified if the perturbations are Gaussian

Then by Wicks theorem, the odd point correlators are zero, the
even ones are reducible to products of two points functions - i.e.
all information is contained in the power spectrum



Why Gaussian perturbations!?

Gaussian perturbations are found everywhere in nature
Often due to the central limit theorem

The ground state of the simple harmonic oscillator is Gaussian - quantum origin of
perturbations

The initial curvaton field perturbation is expected to be Gaussian
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Curvaton evolution
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® For simplicity, we initially assume a quadratic potential for the curvaton,
most papers in the literature do so
G+3Ho+V, =0,
b0 + 3Hbo + V 5o00 = 0.
°

Just for a quadratic potential, the two evolution equations are the same.
This implies that the ratio of the two solutions is constant in time. The

second equation neglects back reaction from gravity, accurate as long as
its energy is subdominant



Curvaton density perturbations
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This is a constant
The truncation at second order follows because we assumed a quadratic potential

The above formula follows the local model, and if the above was the final result for zeta
we would have fni~|

Gravity is non-linear, so further non-Gaussianities will be generated in all models, this also
generates fnL~ |, but with a different shape which can be observationally distinguished -

Antony Lewis’s talk

The above form of non-Gaussianity, Gaussian + Gaussian squared is known as the local
form of non-Gaussianity

However, we should consider that the curvaton is not the only component of the universe
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Curvaton background evolution:

Log of scale factor versus log of energy density
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The curvaton may decay before or after it becomes dominant

Here we assume that the curvaton and inflaton decay instantaneously into radiation
The longer the curvaton lives, the larger its relative energy density becomes, as measured by rdec
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curvaton decay rate

Curvaton decay rate Vs rdec

The curve will shift for different choices of masses and initial curvaton vev. But the
shape remains the same.
For small curvaton decay rates, rgec->1
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The local model of non-Gaussianity

C(x) = Cax) + 3 Ave(CE(x) — (B(x))

The local model which arises from super-horizon evolution of the curvature perturbation

Zeta is conserved in single-field models on large scales, therefore this model only arises in models
with multiple light fields present during inflation

The Planck constraint (and WMAP9 in brackets) are

fNL=2.7+58  (37.2419.9)
Using the power spectrum amplitude, we see that the CMB is at least 99.9% Gaussian for this model.
This shape has its largest signal in the squeezed limit, when one wavelength is very large

Because a detection of a squeezed limit bispectrum would rule out all single-field models, the local
model has been studied in great depth
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Komatsu et al; Decadel review 2009



Corrections to fnL

The basic result is correct, the less efficient the transfer from the
curvaton perturbation to total curvature perturbation, the larger the
non-Gaussianity becomes. This holds quite generally

The “full” result is

9 O O 30,
fNL - 47 dec g B érdec dee = 4py + 3po decay
| 11
If fnu is large, NL o @ X Q_a

The Planck constraint, fni<10, tells us rgec>0.1.A priori, 10-> was possible.

If the curvaton dominates before it decays fni=-5/4



Mixed inflaton-curvaton scenario

All light fields are perturbed during inflation, we will now include the inflaton
field perturbations

The power spectra due to the two fields is
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and the total power spectrum is

PC — P¢ + P,.
The bispectrum is unchanged from the pure curvaton limit
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but fnr is reduced because the power spectrum is enhanced by the Gaus-
sian inflaton field perturbations
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The tensor-to-scalar ratio is also reduced



Higher-order non-Gaussianity
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® For a quadratic potential, we may truncate at second order,
which implies gni=0. Quadratic potentials are simple to
calculate with, so gni has been unfairly neglected.

® |gnL|>>fnL? is possible with non-quadratic potentials

® g\ is hard to constrain. The current bound is |gni|< 108,
Planck has not yet produced a constraint



Non-Gaussianity summary

All single-source models must obey a relation between one
trispectrum parameter and faL

_ <6fNL)2
TNL 5

If multiple-fields contribute to zeta (eg the curvaton and inflaton), then

2
TNL 2 (6f5NL)

A large gnL would signal a non-quadratic potential for the curvaton

faL will be scale dependent unless the curvaton potential is quadratic
and the inflaton fluctuations are negligible

An explicit example of how much we could learn from non-
Gaussianity, it may contain lots of information
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Isocurvature perturbations

Cosmological perturbations may be of two classes, adiabatic or isocurvature

Adiabatic perturbations mean that locally all parts of the universe look the
same, so e.g. the ratio of photons to baryons to CDM is the same
everywhere

The curvaton can generate isocurvature perturbations (most multi-field
models can, single-field models never can), but if the universe thermalises
after curvaton decay then none will survive.The tight Planck constraints are
not a problem for the curvaton scenario, unless you have specified the
reheating process (which a complete model needs)

Planck polarisation data should significantly improve isocurvature bounds this
year

Theorists are not really able to interpret the 1% level isocurvature
constraints in terms of early universe models, the thermal history of the
universe prior to BBN is poorly understood



The simplest curvaton scenario

1 1
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® Parameter constraints were originally made by Bartolo and Liddle
(2002), the data allowed so much freedom they restricted the
model to i) the Gaussian case ii) negligible inflaton perturbations

® (B, Cortes and Liddle (2014) revisited the model with Planck data.
Even dropping those two assumptions we find the model is close to
being ruled out. Observational data has improved a lot.

® We also allow the inflating curvaton scenario, in which the curvaton
drives a second period of inflation. Applies when sigma>Mp..



Curvaton post Planck
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Red lines are for negligible curvaton mass, blue lines have m_sigma=m_ phi/2. Green lines are the inflating
curvaton regime, where it drives a second period of inflation.

Curvaton scenario has a lower bound on rqec from the Planck satellite via fni. But only a detection of fn<-5/4

would rule it out. However, the simplest curvaton scenario, where both it and the inflaton field have quadratic
fields may soon be ruled out. Changing the inflaton potential changes the quadratic curvaton predictions.
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Curvaton post Planck and BICEP2
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Red lines are for negligible curvaton mass, blue lines have m_sigma=m_ phi/2. Green lines are the inflating
curvaton regime, where it drives a second period of inflation.

BICEP2 adds a lower bound on the tensor to scalar ratio, which requires that the inflaton perturbations

contribute at least 50% of the total curvature perturbation (talk to Tomo about a caveat). If confirmed, this
rules out the original curvaton scenario, in which the inflaton perturbations and hence r are negligible.
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A difficult time for curvaton fans?

® Has the BICEP2 detection of large tensor modes ruled out the original curvaton scenario?

21



A difficult time for curvaton fans?

® Has the BICEP2 detection of large tensor modes ruled out the original curvaton scenario?

® |[s the BICEP2 detection correct? The mood is swinging strongly against it, but we need to wait
for new data and Planck dust maps

®  Right or wrong, mixed scenarios in which both the inflaton and curvaton contribute to the
primordial curvature perturbation can never be ruled out by a detection of tensors

®  We may take a positive view, either a large negative running of the curvaton (Sloth 2014) or

anti-correlated isocurvature modes (Kawasaki & Yokoyama 2014) as means to suppress the
large scale power and alleviate possible Planck/BICEP tension
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A difficult time for curvaton fans?

® Has the BICEP2 detection of large tensor modes ruled out the original curvaton scenario?

® |[s the BICEP2 detection correct? The mood is swinging strongly against it, but we need to wait
for new data and Planck dust maps

®  Right or wrong, mixed scenarios in which both the inflaton and curvaton contribute to the
primordial curvature perturbation can never be ruled out by a detection of tensors

®  We may take a positive view, either a large negative running of the curvaton (Sloth 2014) or
anti-correlated isocurvature modes (Kawasaki & Yokoyama 2014) as means to suppress the
large scale power and alleviate possible Planck/BICEP tension

® |n addition, Planck did significantly improve the constraints on both local non-Gaussianity
and isocurvature perturbations, but there was no detection of either. This makes the
curvaton phenomenology less interesting.

®  However, the curvaton does not in any way require the existence of isocurvature
perturbations today, and a natural limit of non-Gaussianity is local fni=-5/4. So Planck data
does not come close to ruling it out all curvaton scenarios.

®  Planck data alone puts pressure on the simplest curvaton scenario
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The curvaton on a

Few people still believe BICEP

The mixed scenario can never be ruled out

But Planck has ruled out a lot of interesting

parameter space




Can we ever learn the truth!?

® The curvaton scenario really is different from single-field inflation
® During inflation we have a second, perturbed degree of freedom

® From the end of inflation until after the curvaton decays, the universe
behaves very differently. Both at the homogeneous and the perturbed
level.

® Because the perturbations are so tiny, fne=-5/4 is a small perturbation.
This might be the only surviving observational signature

® The predictions are not similar because of fine tuning, and the curvaton is
not a perturbative correction to single-field inflation

® There is a good motivation to distinguish fni~1 from 0
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Conclusions

If confirmed, BICEP2 has ruled out the original curvaton scenario in which the
inflaton perturbations can be neglected

lgnoring BICEP2, Planck has put pressure on the simplest curvaton scenario
(quadratic inflaton and curvaton potentials), due to a combination of the spectral
index and r.

The above is true even if we allow an arbitrary proportion of the perturbations to
come from the inflaton (we also allow the curvaton to drive a second period of
inflation). The data is good enough to start ruling out two-field scenarios

Non-Gaussianity constrains the curvaton to not be too subdominant, but are a
long way from testing the fni=-5/4 limit. If non-G is detected, we could learn a lot.

Without a detection of local non-Gaussianity or isocurvature perturbations we
will never need a curvaton type mechanism, but this does not imply the curvaton
didn't exist. How should we proceed?
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A general test of single-source models

® For all models in which only one field generates the primordial curvature
perturbation (other than the inflaton), there is a consistency relation between one
term of the trispectrum and bispectrum

. (6fNL)2
TNL = 5

® |n models where multiple fields contribute there is instead the Suyama-Yamaguchi
inequality

2 2

® From Planck, taun.<2800 (95% confidence)
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Scale-dependence of fnL

. = Y% lég L
T dlog k
® Analogously to the power spectrum, fnL is expected to have some scale
dependence. This reflects evolution during inflation, e.g. it ends

® [t can distinguish between different non-Gaussian scenarios, not just between
Gaussian and non-Gaussian models

® The amplitude of fnL can be tuned in most non-Gaussian models, so a precise
measurement of fnL wont do this

® |n contrast, the scale dependence often can not be tuned independently of:

I . fNL
2. spectral index of the power spectrum

* Scale dependence arises from either multiple fields contributing to zeta, or due to self-
interactions in the potential (leading to non-linear equations)

ST V" Py
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CB etal 2010
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Planck and scale dependence
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WMAP had consistently found a preference for positive fni. Planck is consistent with this,
because the low | modes do prefer a positive value

Large fnL on large scales from a self-interacting curvaton model could also help to explain

the power spectrum dipole asymmetry
27



Potentially large scale dependence of fnL
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The scale dependence can be much
larger than the slow-roll parameters,
even for small self-interactions

CB, Enqvist, Nurmi & Takahashi 201 |



