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timation method in its entirety, but it should be equally
valid.

7.3. Comparison to other results

Figure 35 compares our results from Table 3 (modeling
approach) with other measurements from galaxy surveys,
but must be interpreted with care. The UZC points may
contain excess large-scale power due to selection function
effects (Padmanabhan et al. 2000; THX02), and the an-
gular SDSS points measured from the early data release
sample are difficult to interpret because of their extremely
broad window functions. Only the SDSS, APM and angu-
lar SDSS points can be interpreted as measuring the large-
scale matter power spectrum with constant bias, since the
others have not been corrected for the red-tilting effect
of luminosity-dependent bias. The Percival et al. (2001)
2dFGRS analysis unfortunately cannot be directly plotted
in the figure because of its complicated window functions.

Figure 36 is the same as Figure 35, but restricted to a
comparison of decorrelated power spectra, those for SDSS,
2dFGRS and PSCz. Because the power spectra are decor-
related, it is fair to do “chi-by-eye” when examining this
Figure. The similarity in the bumps and wiggles between

Fig. 35.— Comparison with other galaxy power spectrum measure-
ments. Numerous caveats must be borne in mind when interpreting
this figure. Our SDSS power spectrum measurements are those from
Figure 22, corrected for the red-tilting effect of luminosity dependent
bias. The purely angular analyses of the APM survey (Efstathiou
& Moody 2001) and the SDSS (the points are from Tegmark et al.
2002 for galaxies in the magnitude range 21 < r∗ < 22 — see also
Dodelson et al. 2002) should also be free of this effect, but rep-
resent different mixtures of luminosities. The 2dFGRS points are
from the analysis of HTX02, and like the PSCz points (HTP00) and
the UZC points (THX02) have not been corrected for this effect,
whereas the Percival et al. 2dFGRS analysis should be unafflicted
by such red-tilting. The influential PD94 points (Table 1 from Pea-
cock & Dodds 1994), summarizing the state-of-the-art a decade ago,
are shown assuming IRAS bias of unity and the then fashionable
density parameter Ωm = 1.

Fig. 36.— Same as Figure 35, but restricted to a comparison
of decorrelated power spectra, those for SDSS, 2dFGRS and PSCz.
The similarity in the bumps and wiggles between the three power
spectra is intriguing.

Fig. 37.— Comparison of our results with other P (k) constraints.
The location of CMB, cluster, lensing and Lyα forest points in this
plane depends on the cosmic matter budget (and, for the CMB,
on the reionization optical depth τ), so requiring consistency with
SDSS constrains these cosmological parameters without assumptions
about the primordial power spectrum. This figure is for the case of a
“vanilla” flat scalar scale-invariant model with Ωm = 0.28, h = 0.72
and Ωb/Ωm = 0.16, τ = 0.17 (Spergel et al. 2003; Verde et al. 2003,
Tegmark et al. 2003b), assuming b∗ = 0.92 for the SDSS galaxies.
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ingly so towards their centers. Major-to-minor axis ratios of 2 or greater are not uncommon,
and more massive halos tend to be less spherical than lower mass halos [24,25]. Shapes and
kinematics seem to be closely connected. While the spherically averaged anisotropy profile
(bðrÞ ¼ 1$ 0:5r2

t =r2
r ) grows from zero (isotropic) to about 0.4 (mild radial anisotropy)

[26,27], the local b values correlate with halo shape: positive (radial) on the major axis and neg-
ative (tangential) on the minor axis [28,29].

The DM mass distribution within halos is well described by a near-universal density profile,
the so-called NFW profile [30], which has the form of a double-power-law with the logarithmic
slope c % d logq/d log r transitioning at the scale radius rs from c = $3 at large radii to c = $1 in
the center. More recent higher resolution simulations, however, have found a central slope shal-
lower than c = $1, indicating that the density profile may be better described by a functional
form with a central slope gradually flattening to c = 0, e.g. the Einasto profile [31,32].
The scaling of the transition radius rs with halo mass, formation time, and environment is typ-
ically described in terms of a ‘‘concentration’’, defined as the ratio of the virial radius to the scale
radius, c = Rvir/rs. DM simulations have quantified the concentration–mass relationship, its scatter,
and its evolution with time [33–35]. Concentrations typically increase for lower mass halos,
presumably reflecting their earlier collapse times when the mean density of the universe was
higher, although recent work has reported an upturn of concentrations at high masses [36] pre-
sumably caused by out-of-equilibrium systems [37].

Lastly, we mention the remarkable finding from simulations that the pseudo-phase-space pro-
file, the ratio of the spherically averaged DM mass density to the cube of its spherically averaged
radial velocity dispersion, is well described by a single power-law, Q(r) % q(r)/rr(r)3 & r$1.84,
even though neither the density nor the velocity dispersion profiles by themselves are
[32,38–40]. The power law slope is remarkably close to analytic predictions based on spherical
secondary-infall similarity solution [41] and their generalization [42] in the inner, virialized
regions of halos [43]. Departures from a pure power-law occur around the virial radius, close
to the location of first shell crossing, where particles have not yet fully virialized. Note also that
the low velocity dispersion in subhalos leads to large fluctuations in local estimates of the
phase-space density and thus its spherical average does not follow a single power law [32,43].

Fig. 1. D2(k) % 4p(k/2p)3P(k), the linear power spectrum of density fluctuations at z = 0. The solid line is the canonical cold DM
model with an Eisenstein and Hu [11] transfer function. The dashed line is a thermal relic warm DM model with mWDM = 8 keV
[12]. The dotted line is an atomic DM model [13]. We used WMAP7 cosmological parameters [14], Xm = 0.265, XK = 0.735,
Xb = 0.0449, h = 0.71, r8 = 0.801, and ns = 0.963.
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Negligible! Crucial!
FIG. 9: Correction to the PPF approximation for the
velocity divergence (three top lines) and density power
spectrum (three bottom lines) due to velocity dispersion
at redshifts z = 0 (solid), z = 0.5 (dashed) and z = 1
(dotted). Note that the actual correction is negative in
all cases, we plot their absolute values. These correc-
tions are computed in linear theory, Eqs. (45) and (48),
thus extrapolation well beyond k ∼ 0.1 h Mpc−1 is only
illustrative.

spectrum reads

Pw(k) =

(

2

nvd + 1

)2

Pqw
(k). (39)

Figure 8 shows the results of this consistency check.
In it, we show the measured left and right hand sides
of Eq. (39) for redshifts z = 0, 1, 3. The agreement
in all cases is very good, improving, as expected, for
higher redshifts.

B. PT + Velocity Dispersion

We are interested in estimating the large-scale cor-
rections to the PPF approximation due to the orbit-
crossing induced qθ and qw. As we can see from
the linearized equations of motion, Eqs. (35-37), the

scalar mode of the stress tensor corrects the PPF ap-
proximation already at the linear level, whereas the
vector modes are decoupled in linear theory and cor-
rect the PPF at higher-order in PT. In this section
we estimate the corrections due to the scalar mode
qθ (roughly speaking, velocity dispersion), while in
the next section we tackle the corrections induced
by qw at leading order in nonlinear PT. Since these
deviations are small at large scales we can consider
them separately.

The scalar mode correction can be included by
writing the modified linear theory of Eqs. (35-36) in
a compact form by using a two-component object
ψ1 = δ, ψ2 = θ that obeys the linear equations of
motion,

∂ηψa(k, η) + Ωab ψb(k, η) = Qa(k, η), (40)

where Ωab is the 2x2 matrix,

Ωab =

(

0 −1

− 3
2

1
2

)

(41)

and Q(k, η) = (0, qθ(k, η)). The formal solution to
these equations can be written as

ψa(k, η) = gab(η)φb(k)+

∫ η′

0
dη′gab(η−η

′)Qb(k, η′),

(42)
where φ represents the initial conditions and gab is
the linear propagator [48],

gab(η) =
eη

5

(

3 2

3 2

)

−
e−3η/2

5

(

−2 2

3 −3

)

(43)

Then, the density field in linear theory is given by

δ(k, η) = δppf(k, η) +
qθ(k, η)

(nvd/2 − 1)(nvd/2 + 3/2)
,

(44)

where, as in Eq. (38), we assumed that qθ ∝ Dnvd/2
+ ,

and δppf(k, η) ≡ gab(η)φb(k) is the usual linear the-
ory evolved density field in the PPF approximation.
We can then write the density power spectrum to
leading order in PPF corrections as

Pδδ(k) = Pppf(k)+
2 Pδ qθ

(k)

(nvd/2 − 1)(nvd/2 + 3/2)
, (45)

14
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and matching,

Figure 6: The order �4l prediction from our EFT is compared with the CAMB non-linear output

in the top, and to the no-wiggle power spectrum in the bottom, as well with the linear theory and

Standard Perturbation Theory (SPT). The results from the EFT agree at percent level with the non-

linear theory up to k ' 0.24h Mpc�1, when some high scale power seems to be missing. Results

should improve already by going to �5l order. The results are remarkably better than using SPT. The

no-wiggle power spectrum we use is given by P��,No�Wiggle

= 5.1 · 106q log2(13q + 2e)/(54 q2(14 +

731/(457q + 1)) + log(13q + 2e))2.
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Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [20] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55 h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop
SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [27]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-
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A resummation: Padé integrands
Result for Padé resummed small-k limit
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [20] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55 h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop
SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [27]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-

11

PPadé
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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Padé results: redshift dependence
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Conclusions

At this precision, the Universe at large scales behaves	


    almost as pressureless perfect fluid.

On-going discussion on the importance of short modes.	


     Necessary/irrelevant for convergence at semi-linear 

PT series is not convergent! Reminds asymptotic series	


               (result at 3 loop).

Padé ansatz: parameter free resummation. Much better 
convergence properties and agreement with N-body.

(percent accuracy at BAO scales and         reachable) z = 0

Future surveys will test cosmological expansion and	


     structure formation to percent level. 

k



For the future

Other observables (    , bispectrum,...), other IC (NG).

Predictions for observations: results in redshift space,	


     parametrization of BAOs, bias...

Putting all together? EFTofLSS + resummations

P✓✓

Including neutrinos…

Lagrangian space. Work in phase space.

More analytical understanding. Borel-Padé. UV sens. Other 
basis…


