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Fault Tolerance and Overhead

In order to build a large quantum computer, 
we will probably need to encode it using a 
fault-tolerant protocol.  The logical qubits of 
the circuit are encoded using a quantum 
error-correcting code (QECC); each logical 
gate is replaced by a fault-tolerant gadget.

However, fault-tolerant protocols often have a high overhead 
(ratio physical qubits/logical qubits).   A factor of 100 would 
be considered low overhead by today’s standards.  Also, 
overhead depends on the size of the computation: O(loga T) 
for a computation with T locations.

How small can the overhead be?
Answer: Arbitrarily small constant*

* For error rates below a threshold.  LDPC code sold separately.  
Not available for all implementations.  Additional restrictions may 
apply.  If errors remain, apply another fault-tolerant protocol.



The Issues and Solutions

Why do previous protocols require extra overhead?

• Problem: A QECC of fixed size will always fail with a constant 
probability.  Therefore large computations need large code blocks 
to lower the logical error rate.

But note that no tradeoff is required for 
channel capacity: encode k logical qubits 
in n physical qubits at a constant rate 
R=k/n with logical error rate exp(-O(n)).

Solution: Encode many qubits per block.

• Problem: Large block codes are hard to error correct.
Solution: Use quantum LDPC (Low-density parity check) codes.

• Problem: Ancillas for large blocks are hard to create.

Solution: Use blocks that are large but not too large.  Perform logical 
gates sequentially.



Basic Model of Fault Tolerance

What assumptions will I make about the system?

• Local stochastic noise
• No leakage errors
• Parallel gates
• Fresh ancilla qubits
• Long-range gates
• Fast and reliable classical computation

The last two assumptions are not needed to 
have a threshold, but are necessary for my 
result. 

Note that I am assuming any amount of classical computation is free, 
but to make this reasonable, we should count the amount of classical 
computation needed and make sure it is not too big.  This becomes 
an issue as some of the interesting quantum error-correcting codes 
do not have a good decoding algorithm known.



Shopping for LDPC Codes

An (r-c)-LDPC code is a code where each stabilizer generator has 
weight at most r and each qubit is involved in at most c generators.
We want LDPC codes with a constant rate R but that are still good at 
correcting errors.  There are a limited set of known choices:

Code Family Distance Decoding

Hypergraph 
product codes n1/2 Exponential

Hyperbolic 
surface codes Log n Polynomial

4-D hyperbolic 
homology codes n𝜀 Exponential?

4-D hyp. with 
Hasting’s alg. Log n Polynomial



Hypergraph Product Codes

The hypergraph product code construction 
(Tillich, Zemor, arXiv:0903.0566) takes two 
classical codes and produces a quantum 
code.  If the classical codes are LDPC, the 
quantum code is too.

Using the same classical LDPC code twice, we get

Classical [n,k,d] Quantum [[n2+(n-k)2,k2,d]]

In particular, if k/n and d/n = constant, we have a good classical 
LDPC code, and the quantum code has rate R constant and 
distance d = O(n1/2).  In fact, we can choose a classical code with 
k/n close to 1 and make R as close to 1 as desired.

Unfortunately, the hypergraph product codes have no known efficient 
syndrome decoding algorithm, even when the classical code has one.



Hyperbolic Surface Codes

Freedman, Meyer, and Luo (2002) considered surface codes (like the 
toric code) on a hyperbolic manifold.

Hyperbolic space has the property 
that the volume of a ball is 
exponential in the radius.  We can 
consider the hyperbolic plane modded 
out by some group 𝚪.  This gives a 
compact space with some genus.
The number of logical qubits is given 
by twice the genus.  The distance is 
the size of the smallest non-trivial 
cycle.  There exist manifolds such 
that d = O(log n), k = O(n).

An error produces a pair of point defects.  Decoding can be done via 
matching defects, as with the toric code.



4-D Hyperbolic Codes

It is also possible to consider the 4-D toric 
code construction on 4-dimensional hyperbolic 
manifolds.  Again, by choosing an appropriate 
manifold, we can have the number of encoded 
qubits k = O(n) and the length of a non-trivial 
loop at least O(log n).

In 4 dimensions, errors cause defects which are string loops.  Because 
this is a hyperbolic space, n𝜀 errors are needed to get a loop of radius 
log n.  Therefore, the distance of the code is n𝜀, 𝜀 < 0.3.

(Guth, Lubotzky, arXiv:1310.5555)

It is not clear if there is an efficient decoding 
algorithm for the full distance of these 4-D 
hyperbolic codes.



Typical Errors

All of these codes have sublinear distance.  Luckily, that is sufficient to 
correct typical errors when each qubit has an error with prob. p.

A surface code can correct errors at 
a constant error rate despite 
sublinear distance because when the 
error rate is below the percolation 
threshold, errors tend to form small 
clusters which can be corrected 
separately.

Kovalev and Pryadko showed that 
the same is true of general quantum 
LDPC codes.  (arXiv:1208.2317)

For fault tolerance, we need robust decoding, when there can be 
errors in the measured syndromes.  This can be done by adding an 
extra dimension to the graph of the code to represent time.  A similar 
percolation argument lets us locate both syndrome and data errors.



Logical Error Suppression

Percolation argument tells us that an LDPC code with distance d has 
logical error rate (p/pt)O(d) under minimum-weight decoding with 
threshold pt.

• Hypergraph product codes: logical error rate exp(-n1/2), 
but inefficient decoding.
• Hyperbolic surface codes: logical error rate (p/pt)O(log n) = 
n-O(log pt/p) and efficient decoding.
• 4-D hyperbolic codes: logical error rate exp(-n1/2), but 
optimal decoding may be inefficient.
‣ However, Hastings (arXiv:1312.2546) has given a robust 
decoding algorithm that has depth log n and suppresses 
logical error rate as at least n-O(log pt/p), possibly better.

Polynomial error suppression can be made into any 
polynomial rate n-s at the cost of choosing p to be 
sufficiently far below pt.



Making Ancillas
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Figure 3: A technique to fault-tolerantly create any ancilla state | i: Encode a concatenated code;
each level uses the encoding circuit E . Using a fault-tolerant protocol for the concatenated code,
run a fault-tolerant version D̃ of a circuit D which creates | i. Then decode the concatenated code.

reliably building such a large ancilla block is di�cult and will likely require extra overhead. When
U is a Cli↵ord group gate, the ancilla state needed is a stabilizer state, but when U is not a Cli↵ord
group gate (and it is essential to have at least one non-Cli↵ord U to have a universal set of gates),
the ancilla state, known as a magic state, is not a stabilizer state. For specific stabilizer states and
certain QECCs, there may be tricks that allow us to make large ancilla states without any extra
overhead, but no code is known for which such tricks work for all the needed states.

One way to fault-tolerantly make any state is to rely on other fault-tolerant protocols. Using
concatenated codes, we can perform a universal set of gates provided the physical error rate per
location is below a threshold value [1, 19, 24]. In particular, we can use a concatenated code to
build any desired ancilla state | i. In our case, | i is (I ⌦ U)⌦ (I ⌦ I)k�1(|00i+ |11i)⌦k encoded
in the main QECC, but the same procedure works for any state, as follows: Take some non-fault-
tolerant circuit D that produces | i. Perform the fault-tolerant simulation of D using concatenated
codes. The result (with arbitrarily high probability) is a copy of | i with each physical qubit of
| i encoded using a separate block of a concatenated QECC. Each concatenated code block can
then be decoded level-by-level, resulting in an unencoded copy of | i, as shown in fig. 3. The
procedure results in a physical error rate per physical qubit of | i which is bounded by some
constant value [23]. A similar procedure was used for some fault-tolerant gates in [1, 2].

The catch is that this procedure uses non-negligible overhead. We have to assume that a single
logical error during the circuit D can cause the state | i to be arbitrarily wrong. Therefore, if
we want the probability of a logical error for the whole encoding circuit to be ✏

0

, we need to use
enough levels of concatenation so that the logical error rate per concatenated gate is ✏

0

/|D|, with
|D| the number of locations in D. Concatenated coding requires polylog overhead, so to use this
method to make | i, we need a total number of qubits equal to O(n polylog(|D|/✏

0

)). All of the
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We can perform gates by gate teleportation, but this requires large 
ancillas the size of a code block.  In any case, we need to be able to 
create new code blocks to start the computation.

Create a large code state using the 
standard concatenated code FT 
protocol.  I.e., create concatenated 
codewords, run a logical circuit to 
encode the desired state, then 
decode the concatenated code.

However, if the size of the code block is n physical qubits and the 
encoding circuit uses n2 gates, the total number of physical qubits 
used to create one code block is O(n loga n) for some a.  This is too 
many if we encode all logical qubits in a single block.



Don’t Put All Qubits in One Basket

But we don’t have to encode all logical qubits in a single block.  

Suppose the ideal circuit involves K logical qubits.  Let each code 
block have size n ⩽ K/(R loga+1K), R the constant rate of the code.  
Then the total number of qubits used to make one ancilla block is

n loga n ⩽ (K/R) log-1 K + ... = o(K/R).

• We can make ancillas 
using asymptotically 
negligible overhead.
• But we can only make 
one at a time.

This is sufficient for a universal 
set of fault-tolerant gates.

There will be a total of about K/nR blocks in the computation.



Fault-Tolerant Error Correction
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There are three standard methods of 
fault-tolerant error correction:

• Shor FT EC
• Steane FT EC (for CSS codes)
• Knill FT EC

Steane and Knill FT EC use ancilla states 
which are code blocks in a particular 
logical state.  If we did this, we could 
only do error correction on one block 
at a time.  This could not correct 
storage errors.
Shor EC uses cat states of size equal to 
the weight of the stabilizer generators.

Use Shor EC and LDPC codes.



The Perfect Code Family

(i) Low density parity check codes.

(ii) Constant rate R as n →∞.

(iii) Possible values of n not too rare.
(iv) Corrects a constant fraction of 
likely errors (prob. p per qubit), 
including syndrome errors, with 
logical error suppression as 1/g(n).
(v) Efficient decoding algorithm.

LDPC

We want a code family with the following properties:

Then:

There exists a threshold error rate for length o(g(K)) 
computations, with overhead arbitrarily close to 1/R.



The (Almost) Precise Theorem

Specifically, given a code family satisfying (i)-(iv):

• We have some α<1.
• The computation uses K logical qubits and uses a sequential 
circuit with f(K) locations, with f(K) = o(g(Kα)).
• We wish to achieve overhead within a factor η of the rate of the 
code.
• We want overall logical error probability less than ϵ.

Then:

• There exists a threshold error rate pt(η).
• There exists a threshold size K0(η, f, ϵ).
• If physical error rate p < pt and K > K0, then 
a fault-tolerant circuit simulation exists with 
overall error <ϵ and overhead <η/R.

If (v) is also true (efficient decoding), then the FT 
simulation uses only polynomial classical computation.



Code Families Again

How do the various code families measure up against this theorem?

• Hypergraph product codes satisfy (i)-(iv) with 
exponential error suppression.  They work for all 
polynomial circuit sizes f(K) and can achieve any 
rate R < 1. However, they have inefficient 
decoding.

• 2-D hyperbolic codes satisfy (i)-(v) but only 
with polynomial g(n).  The polynomial can be 
chosen as desired, but the threshold pt will then 
depend on the scaling of f(K).
• 4-D hyperbolic codes can achieve the same 
performance as the 2-D hyperbolic codes with a 
very efficient decoding algorithm.  There is some 
hope they can also achieve exponential error 
suppression since the distance is polynomial.  
However, they cannot achieve rate R near 1.



Final Words

• Only works for a sequential circuit.  Thus the depth blow-up could 
be O(K) if the original circuit is parallelized.
• Only works for sufficiently large computations.  We need time for 
the efficient coding to kick in, and there are sub-leading terms.
• Non-local gates and fast classical computation seem necessary.

More fine print enlarged:

Conclusions:

• There is no real limit to the overhead 
needed for fault tolerance.  We should seek 
practical protocols much better than 
current ones.
• Better LDPC codes are needed which 
give exponential error suppression and 
efficient decoding.
• Perhaps better protocols could lead to 
overhead reduction for small computations.

LDPC


