
What is the Overhead
Required for Fault Tolerance?

Daniel Gottesman
Perimeter Institute
arXiv:1310.2984

Fault Tolerance and Overhead

In order to build a large quantum computer,
we will probably need to encode it using a
fault-tolerant protocol. The logical qubits of
the circuit are encoded using a quantum
error-correcting code (QECC); each logical
gate is replaced by a fault-tolerant gadget.

However, fault-tolerant protocols often have a high overhead
(ratio physical qubits/logical qubits). A factor of 100 would
be considered low overhead by today’s standards. Also,
overhead depends on the size of the computation: O(loga T)
for a computation with T locations.

How small can the overhead be?
Answer: Arbitrarily small constant*

* For error rates below a threshold. LDPC code sold separately.
Not available for all implementations. Additional restrictions may
apply. If errors remain, apply another fault-tolerant protocol.

The Issues and Solutions

Why do previous protocols require extra overhead?

• Problem: A QECC of fixed size will always fail with a constant
probability. Therefore large computations need large code blocks
to lower the logical error rate.

But note that no tradeoff is required for
channel capacity: encode k logical qubits
in n physical qubits at a constant rate
R=k/n with logical error rate exp(-O(n)).

Solution: Encode many qubits per block.

• Problem: Large block codes are hard to error correct.
Solution: Use quantum LDPC (Low-density parity check) codes.

• Problem: Ancillas for large blocks are hard to create.

Solution: Use blocks that are large but not too large. Perform logical
gates sequentially.

Basic Model of Fault Tolerance

What assumptions will I make about the system?

• Local stochastic noise
• No leakage errors
• Parallel gates
• Fresh ancilla qubits
• Long-range gates
• Fast and reliable classical computation

The last two assumptions are not needed to
have a threshold, but are necessary for my
result.

Note that I am assuming any amount of classical computation is free,
but to make this reasonable, we should count the amount of classical
computation needed and make sure it is not too big. This becomes
an issue as some of the interesting quantum error-correcting codes
do not have a good decoding algorithm known.

Shopping for LDPC Codes

An (r-c)-LDPC code is a code where each stabilizer generator has
weight at most r and each qubit is involved in at most c generators.
We want LDPC codes with a constant rate R but that are still good at
correcting errors. There are a limited set of known choices:

Code Family Distance Decoding

Hypergraph
product codes n1/2 Exponential

Hyperbolic
surface codes Log n Polynomial

4-D hyperbolic
homology codes n𝜀 Exponential?

4-D hyp. with
Hasting’s alg. Log n Polynomial

Hypergraph Product Codes

The hypergraph product code construction
(Tillich, Zemor, arXiv:0903.0566) takes two
classical codes and produces a quantum
code. If the classical codes are LDPC, the
quantum code is too.

Using the same classical LDPC code twice, we get

Classical [n,k,d] Quantum [[n2+(n-k)2,k2,d]]

In particular, if k/n and d/n = constant, we have a good classical
LDPC code, and the quantum code has rate R constant and
distance d = O(n1/2). In fact, we can choose a classical code with
k/n close to 1 and make R as close to 1 as desired.

Unfortunately, the hypergraph product codes have no known efficient
syndrome decoding algorithm, even when the classical code has one.

Hyperbolic Surface Codes

Freedman, Meyer, and Luo (2002) considered surface codes (like the
toric code) on a hyperbolic manifold.

Hyperbolic space has the property
that the volume of a ball is
exponential in the radius. We can
consider the hyperbolic plane modded
out by some group 𝚪. This gives a
compact space with some genus.
The number of logical qubits is given
by twice the genus. The distance is
the size of the smallest non-trivial
cycle. There exist manifolds such
that d = O(log n), k = O(n).

An error produces a pair of point defects. Decoding can be done via
matching defects, as with the toric code.

4-D Hyperbolic Codes

It is also possible to consider the 4-D toric
code construction on 4-dimensional hyperbolic
manifolds. Again, by choosing an appropriate
manifold, we can have the number of encoded
qubits k = O(n) and the length of a non-trivial
loop at least O(log n).

In 4 dimensions, errors cause defects which are string loops. Because
this is a hyperbolic space, n𝜀 errors are needed to get a loop of radius
log n. Therefore, the distance of the code is n𝜀, 𝜀 < 0.3.

(Guth, Lubotzky, arXiv:1310.5555)

It is not clear if there is an efficient decoding
algorithm for the full distance of these 4-D
hyperbolic codes.

Typical Errors

All of these codes have sublinear distance. Luckily, that is sufficient to
correct typical errors when each qubit has an error with prob. p.

A surface code can correct errors at
a constant error rate despite
sublinear distance because when the
error rate is below the percolation
threshold, errors tend to form small
clusters which can be corrected
separately.

Kovalev and Pryadko showed that
the same is true of general quantum
LDPC codes. (arXiv:1208.2317)

For fault tolerance, we need robust decoding, when there can be
errors in the measured syndromes. This can be done by adding an
extra dimension to the graph of the code to represent time. A similar
percolation argument lets us locate both syndrome and data errors.

Logical Error Suppression

Percolation argument tells us that an LDPC code with distance d has
logical error rate (p/pt)O(d) under minimum-weight decoding with
threshold pt.

• Hypergraph product codes: logical error rate exp(-n1/2),
but inefficient decoding.
• Hyperbolic surface codes: logical error rate (p/pt)O(log n) =
n-O(log pt/p) and efficient decoding.
• 4-D hyperbolic codes: logical error rate exp(-n1/2), but
optimal decoding may be inefficient.
‣ However, Hastings (arXiv:1312.2546) has given a robust
decoding algorithm that has depth log n and suppresses
logical error rate as at least n-O(log pt/p), possibly better.

Polynomial error suppression can be made into any
polynomial rate n-s at the cost of choosing p to be
sufficiently far below pt.

Making Ancillas

E

E

E

E

E

E D̃ E�1

E�1

| i

Figure 3: A technique to fault-tolerantly create any ancilla state | i: Encode a concatenated code;
each level uses the encoding circuit E . Using a fault-tolerant protocol for the concatenated code,
run a fault-tolerant version D̃ of a circuit D which creates | i. Then decode the concatenated code.

reliably building such a large ancilla block is di�cult and will likely require extra overhead. When
U is a Cli↵ord group gate, the ancilla state needed is a stabilizer state, but when U is not a Cli↵ord
group gate (and it is essential to have at least one non-Cli↵ord U to have a universal set of gates),
the ancilla state, known as a magic state, is not a stabilizer state. For specific stabilizer states and
certain QECCs, there may be tricks that allow us to make large ancilla states without any extra
overhead, but no code is known for which such tricks work for all the needed states.

One way to fault-tolerantly make any state is to rely on other fault-tolerant protocols. Using
concatenated codes, we can perform a universal set of gates provided the physical error rate per
location is below a threshold value [1, 19, 24]. In particular, we can use a concatenated code to
build any desired ancilla state | i. In our case, | i is (I ⌦ U)⌦ (I ⌦ I)k�1(|00i+ |11i)⌦k encoded
in the main QECC, but the same procedure works for any state, as follows: Take some non-fault-
tolerant circuit D that produces | i. Perform the fault-tolerant simulation of D using concatenated
codes. The result (with arbitrarily high probability) is a copy of | i with each physical qubit of
| i encoded using a separate block of a concatenated QECC. Each concatenated code block can
then be decoded level-by-level, resulting in an unencoded copy of | i, as shown in fig. 3. The
procedure results in a physical error rate per physical qubit of | i which is bounded by some
constant value [23]. A similar procedure was used for some fault-tolerant gates in [1, 2].

The catch is that this procedure uses non-negligible overhead. We have to assume that a single
logical error during the circuit D can cause the state | i to be arbitrarily wrong. Therefore, if
we want the probability of a logical error for the whole encoding circuit to be ✏

0

, we need to use
enough levels of concatenation so that the logical error rate per concatenated gate is ✏

0

/|D|, with
|D| the number of locations in D. Concatenated coding requires polylog overhead, so to use this
method to make | i, we need a total number of qubits equal to O(n polylog(|D|/✏

0

)). All of the

20

We can perform gates by gate teleportation, but this requires large
ancillas the size of a code block. In any case, we need to be able to
create new code blocks to start the computation.

Create a large code state using the
standard concatenated code FT
protocol. I.e., create concatenated
codewords, run a logical circuit to
encode the desired state, then
decode the concatenated code.

However, if the size of the code block is n physical qubits and the
encoding circuit uses n2 gates, the total number of physical qubits
used to create one code block is O(n loga n) for some a. This is too
many if we encode all logical qubits in a single block.

Don’t Put All Qubits in One Basket

But we don’t have to encode all logical qubits in a single block.

Suppose the ideal circuit involves K logical qubits. Let each code
block have size n ⩽ K/(R loga+1K), R the constant rate of the code.
Then the total number of qubits used to make one ancilla block is

n loga n ⩽ (K/R) log-1 K + ... = o(K/R).

• We can make ancillas
using asymptotically
negligible overhead.
• But we can only make
one at a time.

This is sufficient for a universal
set of fault-tolerant gates.

There will be a total of about K/nR blocks in the computation.

Fault-Tolerant Error Correction

H

H

U

Transversal

Logical

There are three standard methods of
fault-tolerant error correction:

• Shor FT EC
• Steane FT EC (for CSS codes)
• Knill FT EC

Steane and Knill FT EC use ancilla states
which are code blocks in a particular
logical state. If we did this, we could
only do error correction on one block
at a time. This could not correct
storage errors.
Shor EC uses cat states of size equal to
the weight of the stabilizer generators.

Use Shor EC and LDPC codes.

The Perfect Code Family

(i) Low density parity check codes.

(ii) Constant rate R as n →∞.

(iii) Possible values of n not too rare.
(iv) Corrects a constant fraction of
likely errors (prob. p per qubit),
including syndrome errors, with
logical error suppression as 1/g(n).
(v) Efficient decoding algorithm.

LDPC

We want a code family with the following properties:

Then:

There exists a threshold error rate for length o(g(K))
computations, with overhead arbitrarily close to 1/R.

The (Almost) Precise Theorem

Specifically, given a code family satisfying (i)-(iv):

• We have some α<1.
• The computation uses K logical qubits and uses a sequential
circuit with f(K) locations, with f(K) = o(g(Kα)).
• We wish to achieve overhead within a factor η of the rate of the
code.
• We want overall logical error probability less than ϵ.

Then:

• There exists a threshold error rate pt(η).
• There exists a threshold size K0(η, f, ϵ).
• If physical error rate p < pt and K > K0, then
a fault-tolerant circuit simulation exists with
overall error <ϵ and overhead <η/R.

If (v) is also true (efficient decoding), then the FT
simulation uses only polynomial classical computation.

Code Families Again

How do the various code families measure up against this theorem?

• Hypergraph product codes satisfy (i)-(iv) with
exponential error suppression. They work for all
polynomial circuit sizes f(K) and can achieve any
rate R < 1. However, they have inefficient
decoding.

• 2-D hyperbolic codes satisfy (i)-(v) but only
with polynomial g(n). The polynomial can be
chosen as desired, but the threshold pt will then
depend on the scaling of f(K).
• 4-D hyperbolic codes can achieve the same
performance as the 2-D hyperbolic codes with a
very efficient decoding algorithm. There is some
hope they can also achieve exponential error
suppression since the distance is polynomial.
However, they cannot achieve rate R near 1.

Final Words

• Only works for a sequential circuit. Thus the depth blow-up could
be O(K) if the original circuit is parallelized.
• Only works for sufficiently large computations. We need time for
the efficient coding to kick in, and there are sub-leading terms.
• Non-local gates and fast classical computation seem necessary.

More fine print enlarged:

Conclusions:

• There is no real limit to the overhead
needed for fault tolerance. We should seek
practical protocols much better than
current ones.
• Better LDPC codes are needed which
give exponential error suppression and
efficient decoding.
• Perhaps better protocols could lead to
overhead reduction for small computations.

LDPC

