
QFT and complexity of link invariants of quantum
doubles of finite groups

Hari Krovi
(joint work with Alexander Russell)

Quantum Information Processing group
Raytheon BBN Technologies

Knots and links

Mathematically, a knot is an embedding of S1 into R3 such that it
is invariant up to ambient isotopy.

A link is an embedding of many copies of S1 i.e., many pieces of
string, which could be knotted with each other.

Link invariants

Equivalence of knots - Reidemeister moves

A link invariant is a function from the link (to the complex
numbers) such that if two links are equivalent, then the
numbers are the same.
Possible that two non-equivalent links have the same numbers.

Braid group

Bn is generated by σi and their inverses subject to the following
conditions.

σiσj = σjσi for |i − j | ≥ 2

and
σiσi+1σi = σi+1σiσi+1

(a) σi (b) σ−1
i

Links from braids

Any link can be formed from a braid by closing the strands of
the braid.
Braids on n strands form an infinite group called the braid
group (Bn) generated by σi and σ−1

i .

braid

(c) The trace closure.

braid

(d) The plat closure.

Algebraic approach to link invariants

If one has a braid group representation, then by taking the
normalized trace of b one can construct a link invariant.
The trace should satisfy Markov properties.
One way to produce braid group representations is via the Yang
Baxter Equation (YBE).

(R ⊗ I)(I ⊗ R)(R ⊗ I) = (I ⊗ R)(R ⊗ I)(I ⊗ R) .

=

Figure: The Yang-Baxter relations σiσi+1σi = σi+1σiσi+1.

Quantum double or Drinfeld double

Drinfeld defined the quantum double of two braided Hopf
algebras as a way to construct solutions of the QYBE.
For finite groups, the quantum double looks like the semidirect
product.

(g1h∗1)(g2h∗2) = δ(hg2
1 , h2)g1g2h∗2 .

This generates a finite dimensional algebra denoted D(G), from
which one gets the R matrix (solution of YBE).

R =
∑

g
g ⊗ g∗ .

The R matrix generates σi and thus the braid group. So for
any representation V of the quantum group, we get a
representation of Bn on V⊗n.
The (non) denseness of this representation of Bn in
U(dim(V)n) depends on the quantum group. For D(G), it is
finite.

Quantum double or Drinfeld double

Drinfeld defined the quantum double of two braided Hopf
algebras as a way to construct solutions of the QYBE.
For finite groups, the quantum double looks like the semidirect
product.

(g1h∗1)(g2h∗2) = δ(hg2
1 , h2)g1g2h∗2 .

This generates a finite dimensional algebra denoted D(G), from
which one gets the R matrix (solution of YBE).

R =
∑

g
g ⊗ g∗ .

The R matrix generates σi and thus the braid group. So for
any representation V of the quantum group, we get a
representation of Bn on V⊗n.
The (non) denseness of this representation of Bn in
U(dim(V)n) depends on the quantum group. For D(G), it is
finite.

Dense invariants

About 12 years ago, in a series of papers, certain link invariants
were shown to be closely related to quantum computing.
Algorithms to additively approximate link invariants were found
(Freedman-Kitaev-Wang, Aharonov-Jones-Landau,
Wocjan-Yard).
Additive approximations of dense invariants such as the Jones
polynomial were shown to be BQP complete. Exactly
computing them was shown to #P complete.

Kuperberg showed that one can obtain the complexity of
additive, multiplicative approximations and exact computations
using denseness.
Any quantum computation can be arbitrarily close to the plat
closure of a braid in the dense representation. So additive
approximations are BQP hard, multiplicative SBQP hard and
exact #P hard.
Finally, density implies that any anyonic computer can be
simulated efficiently using the circuit model.

Dense invariants

About 12 years ago, in a series of papers, certain link invariants
were shown to be closely related to quantum computing.
Algorithms to additively approximate link invariants were found
(Freedman-Kitaev-Wang, Aharonov-Jones-Landau,
Wocjan-Yard).
Additive approximations of dense invariants such as the Jones
polynomial were shown to be BQP complete. Exactly
computing them was shown to #P complete.
Kuperberg showed that one can obtain the complexity of
additive, multiplicative approximations and exact computations
using denseness.
Any quantum computation can be arbitrarily close to the plat
closure of a braid in the dense representation. So additive
approximations are BQP hard, multiplicative SBQP hard and
exact #P hard.
Finally, density implies that any anyonic computer can be
simulated efficiently using the circuit model.

Additive and multiplicative approximations

For a function f (x), if the output g(x) of any probabilistic
algorithm can be mainly of two kinds.

Additive approximation

Pr[|f (x)− g(x)| > εu(|x |)] < 1/4 ,

where u is a normalization.
Multiplicative approximation

Pr[|f (x)− g(x)| > εf (x)] < 1/4 .

Our results on D(G)

Algorithms:
We develop the quantum Fourier transform over D(G) subject
to the condition that one can do QFTs over centralizer
subgroups. We show explicitly that this can be done for D(Sn).
We use this to give efficient additive approximations of link
invariants coming from D(G).

Complexity
We show that for certain kinds of irreps (fluxons), the value of
the plat closure of a link can be made arbitrarily close to the
success probability of a randomized computation.
This implies (like Kuperberg’s result) that additive
approximations are BPP hard, multiplicative SBP hard and
exact computations are #P hard.
However, we needed to assume that the group G be of fixed
size.

Our results on D(G)

Algorithms:
We develop the quantum Fourier transform over D(G) subject
to the condition that one can do QFTs over centralizer
subgroups. We show explicitly that this can be done for D(Sn).
We use this to give efficient additive approximations of link
invariants coming from D(G).

Complexity
We show that for certain kinds of irreps (fluxons), the value of
the plat closure of a link can be made arbitrarily close to the
success probability of a randomized computation.
This implies (like Kuperberg’s result) that additive
approximations are BPP hard, multiplicative SBP hard and
exact computations are #P hard.
However, we needed to assume that the group G be of fixed
size.

Our results on D(G)

Simulation
In order to simulate a D(G) computer efficiently, one needs to
(in addition to the QFT) perform the Clebsch-Gordan
transform over D(G).
We show that this can be done for fluxon irreps.
We show that for general irreps, this can be done subject to
some conditions - such as CG over centralizers and another
transform over intersections of centralizers.
We show that for D(Zp o Zq), this can be done for all irreps.
Here p and q are prime and q|(p − 1).
This quantum group has been shown to be universal for
quantum computing (Mochon).

Algorithms over D(G)

The irreducible representations of the quantum double are all
induced representations of the group G .
For any element g ∈ G , the centralizer subgroup is the the set
CG(g) = {z ∈ G |zg = gz}.
Suppose that ρ is an irrep of CG(g), then the irreducible
representations of D(G) are of the type ↑GCG (g) ρ.

If ρ is the trivial irrep, the ↑GCG (g) ρ is called a fluxon irrep.

We reduce the problem of constructing the QFT over D(G) to
that of constructing a QFT over CG(g) for each g .
Since CG(e) = G , this involves knowing the QFT over G as
well.
When G = Sn, we get CSn (π) = Zk o Sck . For these groups, we
give an explicit transversal and QFT using Clifford theory.

Algorithms over D(G)

The irreducible representations of the quantum double are all
induced representations of the group G .
For any element g ∈ G , the centralizer subgroup is the the set
CG(g) = {z ∈ G |zg = gz}.
Suppose that ρ is an irrep of CG(g), then the irreducible
representations of D(G) are of the type ↑GCG (g) ρ.

If ρ is the trivial irrep, the ↑GCG (g) ρ is called a fluxon irrep.
We reduce the problem of constructing the QFT over D(G) to
that of constructing a QFT over CG(g) for each g .
Since CG(e) = G , this involves knowing the QFT over G as
well.
When G = Sn, we get CSn (π) = Zk o Sck . For these groups, we
give an explicit transversal and QFT using Clifford theory.

Complexity

For this, we take the group size to be fixed and focus on fluxon
irreps.
First, we take an arbitrary randomized computation and write
its probability of success as

Ps = 〈φ|R|φ〉 , |φ〉 =
1√
dm

∑
r
|r , c〉 ,

where R is a reversible deterministic computation. r is the
random d it string of length m and c is a string of zeros.

The plat closure has a similar expression

Pl = 〈ψ⊗n|B|ψ⊗n〉 , |ψ〉 =
1
|C |

∑
g∈C
|g , g−1〉

Complexity

For this, we take the group size to be fixed and focus on fluxon
irreps.
First, we take an arbitrary randomized computation and write
its probability of success as

Ps = 〈φ|R|φ〉 , |φ〉 =
1√
dm

∑
r
|r , c〉 ,

where R is a reversible deterministic computation. r is the
random d it string of length m and c is a string of zeros.
The plat closure has a similar expression

Pl = 〈ψ⊗n|B|ψ⊗n〉 , |ψ〉 =
1
|C |

∑
g∈C
|g , g−1〉

Complexity

Using the Ogburn-Preskill encoding, the d levels are on two
anyons and are of the form |g , g−1〉.
So the probability of success is now

Ps = 〈Φ|R|Φ〉 , |Φ〉 =
1√
dm

∑
ḡ
|(c, c−1)kg1, g−1

1 . . . gm, g−1
m 〉 .

To generate group constants c, we generate equations whose
solutions are the group constants.

xi = xw
1 , where w is a word in the xi

x1 x2 · · · xk

Figure: Initial circles.

Complexity

Using the Ogburn-Preskill encoding, the d levels are on two
anyons and are of the form |g , g−1〉.
So the probability of success is now

Ps = 〈Φ|R|Φ〉 , |Φ〉 =
1√
dm

∑
ḡ
|(c, c−1)kg1, g−1

1 . . . gm, g−1
m 〉 .

To generate group constants c, we generate equations whose
solutions are the group constants.

xi = xw
1 , where w is a word in the xi

x1 x2 · · · xk

Figure: Initial circles.

Complexity

Figure: A band between two circles.

x y z

Figure: A simple relation: x z = y .

Complexity

x y z

Figure: The equation x zy = y .

To kill unwanted solutions, we generate equations of the type
y = xw(x)y

1 such that w(d) = 1 and w(c) = α (Here c is the
wanted solution and d is unwanted).
We show that there are simple groups such as An, which have
non-trivial α such that the equation y = xαy

1 has multiple
solutions.

Simulation

We need three capabilities in order to do universal quantum
computation.
Prepare any state in the Hilbert space of a pair of anyons
which correspond to conjugate irreps.
Perform braiding of anyons around each other and around
ancillas.
Fuse pairs of anyons and measure the flux and charge of the
resulting particle.
In order to simulate anyonic computation, we need to simulate
these on the circuit model.
In this part, we assume that the group size is asymptotically
growing again.

Simulation

In order to simulate this using the circuit model, we only need
to focus on the last of the conditions.
The last one can be done if we can do the Clebsch-Gordan
transform over this group.
The CG transform is a unitary that breaks up a tensor product
of irreps into irreps.
We use a tensor product theorem and adapt it to our situation.

ρ ↑GH ⊗σ ↑GK =
⊕

d
(ρ ↓H∩Kd ⊗σ ↓H∩Kd) ↑G

For fluxon irreps, we obtain a transform.
For dyons, we obtain a transform assuming one can do CG
transforms over centralizers etc.

Conclusions and open problems

The denseness (or the lack of it) seems to be related to the
complexity of approximating the link invariant.
Also related to the computational power of the anyonic system.
For dense invariants, the relationship is clearer, whereas little is
known for non-dense invariants.
Could lead to insights into what kind of gates sets lead to a
certain computational power.

Extend the hardness result to asymptotically growing groups
(need new techniques).
Extend the Clebsch-Gordan transform to other groups.
These techniques could help with other problems as they
involve finite groups.

Conclusions and open problems

The denseness (or the lack of it) seems to be related to the
complexity of approximating the link invariant.
Also related to the computational power of the anyonic system.
For dense invariants, the relationship is clearer, whereas little is
known for non-dense invariants.
Could lead to insights into what kind of gates sets lead to a
certain computational power.
Extend the hardness result to asymptotically growing groups
(need new techniques).
Extend the Clebsch-Gordan transform to other groups.
These techniques could help with other problems as they
involve finite groups.

