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What is the optimal rate of information storage
in a quantum memory?

Noise channel T; : My — My is Markovian, i.e. Tz = et~.
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Quantum subdivision capacity: Q¢ (t£)

Different choices of ¢ lead to different capacities!



Definition (MH, Reeb, Wolf 2013)

The €—quantum subdivision capacity of tL is then defined as the supremum
of asymptotical achievable rates

Q¢ (tL) :=sup{R€R": R = limsup i}

v—oo My

such that the asymptotic communication error vanishes

k

id?"” — ’DOH (C/ o (ef£)®mu) o0&

=1

inf

—0 asv — oo.
k,E,D,Cy,...,Ck

o

Infimum goes over:
e k € N number of subdivisions
o £:MP™ — MI™ and D : ME™ — MY™ quantum channels
e C; € € channels from the subset €
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Infinitesimal divisible coding maps

1. Example: Let € be the set of infinitesimal divisible quantum channels

N / . N
e =TI, e“i for some coding Liouvillians £}

e ~~ Denote this set by ID.
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Theorem (MH, Reeb, Wolf 2013)

For any noise Liouvillian £ : My — My and any t € Rt we have

Qb (tﬁ) = |og(d)



Proof of Qip (tL) = log(d)

Continuity of quantum capacity:

Q (eiﬁ) s log(d), k — oo

Coding scheme achieving maximal subdivision capacity log(d):
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But the channel D o £ is not necessarily infinitesimal divisible!



Proof of Qip (tL) = log(d)

Implement intermediate coding via unitaries and pure ancillas

Almost pure ancillas from the infinitely divisible channel:

p=(L—e ™)tr(p)]0) (0] + e "p, forlarge rater
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How many pure ancillas are sufficient?



Proof of Qip (tL) = log(d)

Decoupling approach to the quantum capacity:
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e Random isometry £ leads to asymptotically vanishing r.h.s.
e Then D has the form

D(p) = tre (VpVT)

for isometry V, where |E| = rank (oF).

Schumacher Compression:

rank (O’E) ~ 2mS(7")

~~ number of qubit ancillas sublinear in m
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Unitary coding maps

2. Example: ¢ =4l i.e. unitary coding maps.

Theorem (MH, Reeb, Wolf 2013)

For any noise Liouvillian £ : My — My and any t € Rt we have

Qu (tL) >0

~~Better bounds possible. Depending on the entropy of the fixed points.
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Unitary coding maps

2. Example: ¢ =4l i.e. unitary coding maps.
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Maximal entropy of ancilla states never reached in finite time!

Theorem (MH, Reeb, Wolf 2013)

For any noise Liouvillian £ : My — My and any t € RT we have
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Is Qy (tL) also log(d)?

Answer: No!

Liouvillian depolarizing onto state py € Mgy:
d
LY (p) :=tr(p)po—p

~+ Generates depolarizing channel: e*<*” (p) = (1—e ) tr(p)po+ep

Theorem (MH, Reeb, Wolf 2013)

For the noise Liouvillian L% ; My — My and t € RY we have

Qu (££%) < log(d) — (1= &™) S (po)



Proof of Qy (t£%P) < log(d) — (1 —e~*) S (po)

Consider subdivision coding scheme achieving rate R:

K
id?Rm — DOH (L{/ o (eﬁﬁ)@n) o&

=1

inf
k,£,D,Cx,...,.Ck

—0

<

Entropy growth for depolarizing channels [Aharonov, et al.]:
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Consider subdivision coding scheme achieving rate R:
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Entropy growth for depolarizing channels [Aharonov, et al.]:
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Continuous quantum capacity

Definition (MH, Reeb, Wolf 2013)

The €—continuous quantum capacity of noise Liouvillian t£ is then defined
as the supremum of asymptotical achievable rates

Q%ont (tE) = SUP{R c R+ - R= Iimsup &}

v—oo My

such that the asymptotic communication error vanishes
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o £:MP™ — MI™ and D : ME™ — MF™ quantum channels

o L. € € time-dependent coding Liouvillians from the subset €



Can dissipation improve quantum capacity?

Answer: Yes

Even for usual quantum capacity we have:

Theorem (MH, Reeb, Wolf 2013)

There exist time-independent Liouvillians £ : My — My and L' : My — My
where L' is purely dissipative such that

Q <e£> <Q (e“ﬁl) :



Some riddles...

To what extend can Q (e£+£l) differ from Q (eL)?

What are good choices for € in the various capacities?

Is there a closed formula for Qg (t£)?

Thank you for your attention.

For more information see: arXiv:1310.2856
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