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Dear B
ob!

1. Communication

Shannon (1948): Fundamental problem is that of 
reproducing at one point a message selected at 
another point.
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1. Channels & capacity
Channel = cptp map N:L(A)    L(B),

Stinespring: N( ) = Tr  V  V,
              with an isometry V:A    B  E.

E
⊗

ρ ρ
†

↪→

→

Complementary channel:
              N( ) = Tr  V  V.B

†
ρρ̂

where A, B are finite-dim. Hilbert spaces.
Kraus representation, you know...

VA B
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1. Channels & capacity
Ex: 1) Noiseless channel = identity id .
2) Constant channel K(ρ) = ω .
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4) Amplitude damping channels
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6) Erasure channel € (ρ)=(1-q)ρ⊕ q|*><*|q



1. Channels & capacity

(Later in this talk, we’ll look at some 
special classes: degradable, Hadamard,
entanglement-breaking, ...)

Ex: 1) Noiseless channel = identity id .
2) Constant channel K(ρ) = ω .

A

0

3) Depolarizing channels
4) Amplitude damping channels
5) Phase damping channels
6) Erasure channel € (ρ)=(1-q)ρ⊕ q|*><*|q



Classical capacity C(N) := maximum cbit 
rate - for asymptotically error-free 
transmission over N .  , with encoding 
and .
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Classical capacity C(N) := maximum cbit 
rate - for asymptotically error-free 
transmission over N .  , with encoding 
and .
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...C(N) is not the only capacity:

Private capacity P(N) := maximum cbit 
rate as before, in addition asymptotically 
secret: environment almost independent.

Quantum capacity Q(N) := maximum 
qubit rate for asymptotically faithful 
transmission.

...and a veritable ”zoo” when allowing 
other free resources: E, ←, →, ↔, ...



Private capacity P(N) := maximum cbit 
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Private capacity P(N) := maximum cbit 
rate - for asymptotically error-free and 
secret transmission over N . ⊗nn
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Quantum capacity Q(N) requires en- and 
decoding by cptp maps E, D:
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ΦCC’ CC’σ

k=k(n,ε) EPR pairs Approximates input:
P( ,  )   ε.σΦ

Quantum capacity Q(N) requires en- and 
decoding by cptp maps E, D:

≤(rate still - )n
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F( ,  ) = ||       ||
        = max |<  |  >| s.t.
          |  > purifies  , |  > purifies  .ρ σ

1
ψ

ψ

ϕ

ϕ

ρ σ
√

ρ
√

σ

Digression on fidelity:

P( ,  ) :=  1-F( ,  )  is a metric on states;
...and so is A( ,  ) := arcsin P( ,  ).

Note: Both are equivalent to the trace 
distance ||  -  || .1

2
ρ ρ

ρ ρ

ρ

σ σ

σ σ

σ

√

[cf. M. Tomamichel, PhD thesis, arXiv:1203.2142]



Outline
1. Quantum channels and their capacities         ✓

2. Entropic capacity formulas; weak converse

3. What is a strong converse?

4. Ideal channel (warm-up); simulation argument

5. Rényi divergence paradigm: classical capacity

6. Min-entropies: ”pretty strong” converse

7. End credits



Thm (Holevo and Schumacher/
Westmoreland, 1973 and 1996/7):
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∑
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Holevo information S(ρ )-    p S(N(ρ ))B
∑

xx
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2. Capacity formulas and
   weak converse

Von Neumann entropy: S(ρ) = -Tr ρlog ρ
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is not additive in general [Hastings, Nat. 
Phys 2009], hence C(N) > χ(N) possible.
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 χ(N) = max I(X:B) wrt. {p ,ρ } andx x
                ρ  =    p |x><x|   N(ρ )XB

∑

x x⊗

is not additive in general [Hastings, Nat. 
Phys 2009], hence C(N) > χ(N) possible.

!

Unfortunately,

x

However, for some classes of channels 
it is, and we know the classical capacity 
C(N) as χ(N).
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(”converse”) was proved first. In fact, 
Holevo [Probl. Inf. Transm. (1973), and 
other work in 1970’s] showed that 
transmitting k bits over n uses of N 
with error ε,

k (1-ε) ≤ 1 + χ(N   ) ≤ 1 + n C(N).⊗n

Uses only strong subadditivity (SSA) and 
continuity of von Neumann entropy 
(Fannes inequality): S(ρ) = -Tr ρlog ρ.
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Interestingly, the upper bound 
(”converse”) was proved first. In fact, 
Holevo [Probl. Inf. Transm. (1973), and 
other work in 1970’s] showed that 
transmitting k bits over n uses of N 
with error ε,

k (1-ε) ≤ 1 + χ(N   ) ≤ 1 + n C(N).⊗n

...is the implied tradeoff real?

-    (1 +ε) C(N)k
n !

”weak converse”
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Thm (Devetak and Cai/Yeung/AW, 2003):
  P(N) = lim  - P  (N   ), with1

n
→ ∞n

⊗n

 P  (N) = max I(X:B)-I(X:E) wrt. {p ,ρ }x x

Analogous formulas for P(N) and Q(N):
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Thm (Schumacher and Lloyd-Shor-
Devetak, 1996-2003):
  Q(N) = lim  - Q  (N   ), with

 Q  (N) = max I(A>B) 
         = max S(N(ρ)) - S(N(ρ)) wrt. ρ

1
n

⊗n(1)
→ ∞n

(1)

coherent
information

̂
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capacity we know how to characterize.

(Btw: also additivity issue with these!)
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Thm (Devetak and Cai/Yeung/AW, 2003):
  P(N) = lim  - P  (N   )1

n
→ ∞n

⊗n(1)

Thm (Schumacher and Lloyd-Shor-
Devetak, 1996-2003):
  Q(N) = lim  - Q  (N   )1

n
⊗n(1)

→ ∞n

Important to know: For all these 
capacities, at rates below, the error goes 
to zero exponentially, always!

...so what about rates above capacity?



3. Strong converse?
The strong converse - in the sense of 
Wolfowitz [Ill. J. Math. 1:591 (1957)] -, 
is the statement that there is no rate-
error trade-off. Viz., for rates R above 
the capacity, the error converges to 1.



3. Strong converse?
The strong converse - in the sense of 
Wolfowitz [Ill. J. Math. 1:591 (1957)] -, 
is the statement that there is no rate-
error trade-off. Viz., for rates R above 
the capacity, the error converges to 1.

By contrapositive: If error < 1, then 
asymptotically the rate - is bounded by 
the capacity.
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Classical capacity of certain channels 
[Koenig/Wehner, PRL 103:070504 (2009)]
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Strong converse: If error < 1, then 
asymptotically the rate - is bounded by 
the capacity.

k
n

Classical channels [Shannon-Wolfowitz]
Classical capacity with product state 
inputs [Ogawa/Nagaoka; AW, IEEE-IT 
45(7), 1999] - i.e., cq-channels
Classical capacity of covariant channels 
[Koenig/Wehner, PRL 103:070504 (2009)]

Progress over the years:
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C(N)0

Definition/coding 
theorem (HSW)

Weak converse:
error bound

Strong converse

Rate vs asymptotic error:

Pr{err}



4. Ideal channel

As a warm-up, prove strong converse for 
the noiseless qubit channel id . Note:

quantum code ⇒ private code ⇒ classical code
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4. Ideal channel

As a warm-up, prove strong converse for 
the noiseless qubit channel id . Note:

quantum code ⇒ private code ⇒ classical code

Hence Q(N) ≤ P(N) ≤ C(N) in general. 
Since Q(id ) = P(id ) = C(id ) = 1, enough 
to show it for the classical capacity.

2

2 2 2



Warm-up: strong converse for the 
noiseless qubit channel id .

Encode M message into id   via states ρ  

and POVM elements D   to decode:
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Warm-up: strong converse for the 
noiseless qubit channel id .

Encode M message into id   via states ρ  

and POVM elements D   to decode:

2

L m

m

1-ε≤ -     Tr(ρ D ) ≤ -     Tr D  = - .
∑ ∑1 1

M Mm=1 m=1

MM
m

L
Mmm

For n uses of the channel and rate R>1:
L=2  and M=2   , so ε≥ 1 - 2       .  QEDn nR -n(R-1)

[Nayak, Proc. 40th FOCS, pp. 369-376 (1999)]



The simulation argument: If you can 
simulate a channel N by id  at rate K, 
then C(N) ≤ K and for rates R>K, the 
error ε≥ 1 - 2       .-n(R-K)

In particular: If K=C(N), strong converse 
holds. Almost only trivial cases, except:
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holds. Almost only trivial cases, except:

2

Thm (Wilde/AW, 1308.6732): For pure 
loss optical channel w/ transmissivity η 

C = g(ηP), and the strong converse holds.
and maximum mean photon number P,



The simulation argument: If you can 
simulate a channel N by id  at rate K, 
then C(N) ≤ K and for rates R>K, the 
error ε≥ 1 - 2       .-n(R-K)

2

More interesting with free resources, eg. 
C (N) = ent.-assisted classical capacity
       = minimal simulation cost assisted
    by ent. (”Qu. Reverse Shannon Thm.”)

E

[Bennett et al., IEEE-IT 48:2637 (2002); Bennett et al. 0912.5537]
[Cf. Berta et al., IEEE-IT 59:6770 (2013) - P(N) bound]

Ie. strong converse holds for C .E



5. Rényi divergences for C
What can we do for C(N)? Nothing 
general it seems... However, unifying and 
extending the earlier results of Ogawa/
Nagaoka, AW and König/Wehner:



5. Rényi divergences for C

Thm (Wilde/AW/Yang, 1306.1586): If N is 
entanglement-breaking (EB) or Hadamard 
(H), then for any code w rate R > C(N), 
Pr{err} converges to 1, exponentially fast 
in the number n of channel uses.

What can we do for C(N)? Nothing 
general it seems... However, unifying and 
extending the earlier results of Ogawa/
Nagaoka, AW and König/Wehner:



There exists t ≥ ΩΩ((R-C(N)) ) s.t.2

1-P{err} ≤ exp(-tn).

5. Rényi divergences for C
Thm (Wilde/AW/Yang, 1306.1586): If N is 
EB or H, then for any code w rate R > 
C(N), the error probability converges to 1, 
exponentially fast in the number n of 
channel uses:



There exists t ≥ ΩΩ((R-C(N)) ) s.t.2

1-P{err} ≤ exp(-tn).

In other words, these channels satisfy 
the strong converse.

5. Rényi divergences for C
Thm (Wilde/AW/Yang, 1306.1586): If N is 
EB or H, then for any code w rate R > 
C(N), the error probability converges to 1, 
exponentially fast in the number n of 
channel uses:



Hold on! I haven’t even told you what 
these ”EB” and ”H” things are...
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σAB separable

Hold on! I haven’t even told you what 
these ”EB” and ”H” things are...

Complementary to these: 
Hadamard channels (H)
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Channels of this form: Hadamard channels

Schur 
productisometry U=   |j><α| : A→E

∑
j
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   classical output
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Hadamard channels:
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Departure point minimax characterization 
of χ(N): [Schumacher/Westmoreland, PRA 2000]

χ(N) = min max D(N(ρ)||σ)
ρσ

The proof is beautiful but a bit long...

Relative entropy: 
D(ρ||σ) = Tr ρ(logρ- logσ)

Note: For EB and H channels N this is 
additive, and so C(N) = χ(N).

[Shor, JMP 2002 (EB); King et al., quant-ph/0509126 (H)]
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       D(ρ||σ) = Tr ρ(logρ- logσ)
is a special case of a whole family of 
”generalized divergences”...
[Cf. Petz, 0909.3647; Müller-Lennert et al., 1306.3142]

Fundamental property is monotonicity:
For any cptp map N,

    D(ρ||σ) ≥ D(N(ρ)||N(σ)) ≥ 0.~ ~

(➣ talk by Marco Tomamichel, Fri 10:20)
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mρ DM

msg’s }Pr{m=m}
    ≥ 1-ε

m̂

m

mρ D }Pr{m=m}
    = 1/M

m̂

m

̂

̂
σ

vs

M
msg’s

[Cf. Polyanskyi/Verdú, Proc. 48th Allerton CCC, 2010]
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Sandwiched α-Rényi relative entropy (α> 1):
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Crucially additive: χ (N   ) = n χ (N).α α
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...and converges to χ(N) as α→1!
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and α>1 small enough. QED



1-ε ≤ exp{-n     (R-χ (N))},α
α-1

For log M = nR:

α
~

which is exponentially small for R>χ(N)
and α>1 small enough.

Combining with simulation argument and 
recent additivity of minimum output 
(Rényi) entropies [Giovannetti/García-Patrón/

Cerf/Holevo, 1312.6225]: Strong converse for 
covariant Gaussian channels.

QED

[Bardhan/García-Patrón/Wilde/AW, 1401.4161]
✓
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†
ρρ̂
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6. Min-entropies: ”pretty 
   strong” converse for Q

Stinespring: N( ) = Tr  V  V,
              with an isometry V:A    B  E.

E
⊗

ρ ρ
†

↪→

Complementary channel:
              N( ) = Tr  V  V.B

†
ρρ̂

N is degradable if there exists a cptp map D 
s.t. N = D  N. Vice-versa: anti-degradable.̂ ◦
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Degradability in the Church of the 
Larger Hilbert Space:

E ↔ E’ 
symmetric
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Q  (N) is additive and so Q(N) = Q  (N), 
and the latter is a convex optimisation.

Why we are interested in degr. channels:
(1) (1)

[Devetak/Shor, CMP 256:287 (2005)]
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Q  (N) is additive and so Q(N) = Q  (N), 
and the latter is a convex optimisation.

Why we are interested in degr. channels:
(1) (1)

[Devetak/Shor, CMP 256:287 (2005)]

(For anti-degradable N: Q(N) = 0.)
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47(7):2921-2933 (2001)]: If N is PPT 
entanglement-binding, then of course 
Q(N)=0, and strong converse holds (with 
error converging exponentially to 1).



A previous result [via E. Rains, IEEE-IT 
47(7):2921-2933 (2001)]: If N is PPT 
entanglement-binding, then of course 
Q(N)=0, and strong converse holds (with 
error converging exponentially to 1).

Note: Already for symmetric (degradable 
& anti-degradable) channels - for which 
also Q(N)=0 - not clear at all.
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Exercise: Strong converse for noiseless 
qubit id , even assisted by classical 
communication.

Implies: Error goes to one for rates 
above E (N), the entanglement cost of 
simulating the channel with free 
classical communication [Berta et al., 
IEEE-IT 59(10):6779-6795 (2013)].

2

C

Still doesn’t take care of 50% erasure 
channel, dephasing channels, etc!



Thm (Morgan/AW, 1301.4927): For any 
degradable channel N, all codes with rate 
R > Q(N) have error at least 0.707, 
asymptotically. I.e., at Q(N), the error 
has a finite ”jump”:
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.707 Pretty strong
converse

Thm (Morgan/AW, 1301.4927): For any 
degradable channel N, all codes with rate 
R > Q(N) have error at least 0.707, 
asymptotically. I.e., at Q(N), the error 
has a finite ”jump”:



Error/fidelity achieved by a single 50% 
erasure channel - without encoding.

Thm: For any degradable channel N, codes 
with rate R > Q(N) have error at least 
0.707, asymptotically. I.e., at Q(N), the 
error has



Thm: For any degradable channel N, codes 
with rate R > Q(N) have error at least 
0.707, asymptotically. I.e., at Q(N), the 
error has

Error/fidelity achieved by a single 50% 
erasure channel - without encoding.

On the other hand: For larger error, any 
i.i.d. symmetric channel allows coding of 
k = c√n qubits, by random codes. More?—



Thm: For any degradable channel N, codes 
with rate R > Q(N) have error at least 
0.707, asymptotically. I.e., at Q(N), the 
error has

Similar result for private capacity:

Thm (1301.4927): For degradable channel N, 
if decoding error and distance from 
perfect privacy are both below some 
universal threshold, then the rate is 
asymptotically bounded by P(N)=Q(N).



Thm: For any degradable channel N, codes 
with rate R > Q(N) have error at least 
0.707, asymptotically. I.e., at Q(N), the 
error has

Significance of symmetric channels:

Thm (1301.4927): If symmetric channels 
(whose quantum capacity is 0) obey a 
strong converse, then so do all degradable 
channels N: for error below 1, rate would  
be asymptotically bounded by Q(N).



Proof uses tight finite block length
   characterization of P and Q via
   (smooth) min-entropies & some tricks:
   symmetrization, de Finetti theorem,
   asymptotic equipartition property...

[Cf. R. Renner, PhD thesis, quant-ph/0512258 
& M. Tomamichel, PhD thesis, arXiv:1203.2142]



Proof uses tight finite block length
   characterization of P and Q via
   (smooth) min-entropies & some tricks:
   symmetrization, de Finetti theorem,
   asymptotic equipartition property...

[Cf. R. Renner, PhD thesis, quant-ph/0512258 
& M. Tomamichel, PhD thesis, arXiv:1203.2142]

Can be viewed as a complicated version of 
the proof of additivity: P(N)=Q(N)=Q  (N)
for degradable N... :-/

[Devetak/Shor, CMP 256:287 (2005)]

(1)



Lesson: To get more precise under-
standing of code performance have to 
abandon von Neumann entropy and 
embrace non-standard entropies (Rényi 
entropy, min-entropy, ...)
Price to pay: Each channel and each 
capacity requires its own approach. 
Many open - e.g. multi-user channels...

7. Conclusion (sort of...)



The trick with the sandwiched channel 
reduces the additivity of χ(N) to that 

of the minimum output Rényi entropy 
of an associated family of cp (trace 
non-preserving) maps. Can it be applied 
to other channels? Other divergences? 
[Wilde/AW/Yang, 1306.1586]

 Can we also get ”2nd order” behaviour? 
[Cf. Tomamichel/Tan, 1308.6503 for cq-channels]

7. Conclusion (sort of...)



Big open problem: ”pretty strong” is 
pretty ugly - how to get full strong 
converse for Q of degradable channels!? 
Bottleneck are the symmetric channels, 
e.g. 50% erasure channel...
How to prove strong converses 
without additivity? Note that neither P, 
Q nor P  , Q  , χ are generally additive! 

(Not known for C.)

(1)

7. Conclusion (sort of...)

(1)
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additive, and so C(N) = χ(N).
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       D(ρ||σ) = Tr ρ(logρ- logσ)
is a special case of a whole family of 
”generalised divergences”.
[Cf. Petz, 0909.3647; Müller-Lennert et al., 1306.3142]

Fundamental property is monotonicity: for 
any cptp map N,
    D(ρ||σ) ≥ D(N(ρ)||N(σ)) ≥ 0.      (*)

Notation: for binary distributions P=(p,1-p) 
and Q=(q,1-q), write D(P||Q) = D(p||q).

~ ~

~ ~
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D(⊕ p ρ || ⊕ p σ ) =     p  D(ρ ||σ ).
∑

x xx x x x x x x x

Then, for a code with M msg’s, error ≤ε,

D(1-ε||1/M) ≤ D(ρ  ||ρ   σ)

                ρ  = -     |m><m|   N(ρ ):XB
∑

m m⊗and
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(+)

(*)

M
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1
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Assume furthermore that

D(⊕ p ρ || ⊕ p σ ) =     p  D(ρ ||σ ).
∑

x xx x x x x x x x

Then, for a code with M msg’s, error ≤ε,

D(1-ε||1/M) ≤ D(ρ  ||ρ   σ)

                ρ  = -     |m><m|   N(ρ ):XB
∑

m m⊗and

XB ⊗X

(+)

(*)

M
1

D(1-ε||1/M) ≤ -     D(N(ρ )||σ)(+) ∑

mM
1

m

D(1-ε||1/M) ≤ max D(N(ρ)||σ) =: χ   (N)
ρ D,σ

~ ~

~ ~

~

~[Cf. Nagaoka (≈2000); 
Polyanskiy/Verdú (2010);
Sharma/Warsi, 1205.1712.]
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D(1-ε||1/M) ≤ max D(N(ρ)||σ) =: χ   (N)
ρ D,σ

~ ~
~

Everything depends on right choice of D: ~

D (ρ||σ) :=      log Tr (σ   ρσ   )α
1
α-1

~ α1-α
2α

1-α
2α

Sandwiched α-Rényi relative entropy (α> 1)

[Cf. Müller-Lennert et al., 1306.3142;
Beigi 1306.5920; Frank/Lieb 1306.5358]

It’s monotonic, has property (+) and is
≤ D (ρ||σ) :=     log Tr ρ σ   , withα

1
α-1

α 1-α

which it coincides when states commute.
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~ ~

D (ρ||σ) :=      log Tr (σ   ρσ   )α
1
α-1

~ α1-α
2α

1-α
2α

α α

Crucial: -χ   (N) is the minimum α-Rényi 

output entropy of a perturbed cp map N’,
α,σ

N’(ρ) = σ   N(ρ)σ  .
1-α
2α

1-α
2α

Lhs: D (1-ε||1/M) ≥ log M +     log(1-ε)~
α

α
α-1
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log(1-ε) ≤ (1- -) (χ   (N) - log M ) α,σα
1

Now apply this to N   , σ  , and M=2   .nR⊗n ⊗n

Have:

Key observation: Sandwiched channel is 
(N’)  , and N’ is EB if N is. 

⊗n

⇒ Additivity, χ   (N   ) = n χ   (N).α,σ α,σ
⊗n

(Because of identity with min output entropy of N’)
[King, QIC 2003; Holevo, Russ. Math. Surveys 2006]
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1

Get, for n uses of N at rate R:

To complete the proof, need only to 
observe convergence of χ   (N) to χ(N);α,σ
hence can make r.h.s. of (&) ≤ -nt, t > 0,
by choosing α> 1 close enough to 1.

(&)

Takes care of EB channels; H similar but 
requires another small trick (...)      QED
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Φ
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k    H  (A|E) = -H  (A|E’F)≤
εε

min max

[For min-entropy calculus, consult
 R. Renner, PhD thesis, quant-ph/0512258 

& M. Tomamichel, PhD thesis, arXiv:1203.2142]
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k    H  (A|E) 
   = -H  (A|E’F)

≤

ε

ε

min
max

[Cf. also Buscemi/Datta,
IEEE-IT  56(3), 2010;
Datta/Hsieh, 1103.1135]



k    H  (A|E) 
   = -H  (A|E’F)

≤

ε

ε

min
max Note: If we knew that for n 

channel uses, the maximum 
min-entropy is attained on a 
tensor product input, we’d be 
done by AEP (= asymptotic 
equipartition property)...
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λ δ
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   = -H  (A|E’F)

≤

ε

ε

min
max

     H  (F|E’) - H  (AF|E’) + O(1)≤ max max
λ δ

Chain rule,   =  +3  .δ ε λ

     H  (F|E’) + O(1)≤ max
λ

...if   <0.707, by inequality 
H   vs. H   , and using symmetry
between E and E’...

δ

maxmin
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k    H  (F  |E’  ) + O(1)≤ max
λ

2) For n channel uses, have restricted
   concavity of H   :max

λ

nn

k    H   (F  |E’  )    + O(1)≤ max
nn

W.r.t. a permutation
symmetric input state
and λ = λ/   

(n)ρ
A

λ‘

‘ √

2
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λ

2) For n channel uses, have restricted
   concavity of H   :max

λ

nn

k    H   (F  |E’  )    + O(1)≤ max
nn

3) By de Finetti theorem
  [R. Renner, PhD thesis, quant-ph/0512258]:

k    max H   (F  |E’  )    + o(n)≤ max
nn

ρ
A

ρ
⊗n

(n)ρ
A

λ‘

λ‘‘



4) By AEP (asymptotic equipartition
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   property) [M. Tomamichel, arXiv:1203.2142]:

k    max H   (F  |E’  )    + o(n)≤ max
nn

ρ
A

ρ
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   = max n S(F|E’)  + o(n)
ρ

ρ

A

   = n Q  (N) + o(n)(1)

(by the degradability argument)
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QED


