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[Feynman ’81] Exponential description of  quantum  
   states poses challenge to classical simulation.  
 

         Classical: O(n) parameters. 
 

         Quantum: 2O(n) parameters. 
 
 
Use a quantum computer.  
 
What do we do until we have quantum computers? 
 

n particles 



Numerical techniques have been remarkably  
 successful in practice for 1D systems: 
 
•  Good Ansatz for Ground state: MPS 

•  DMRG algorithm[White ’92] very successful for 1D 

•  Doesn’t always work. Artificial hard examples known. 
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 1. Is there a theoretical justification? 
    Are 1D systems easy? 
2. 2D systems? 



1D Ground States 

 H = H1 +!+ Hm

•  Qudits 

•  Each Hi is d2xd2, positive, norm ≤1 

•  Wish to compute ground state |GS>, 
    state that minimizes energy E = <GS|H|GS> 
 
•  Given the Hi as input (to some precision), calculate 
   a classical description of |GS> (to some precision). 
   The classical description must allow efficient 
   evaluation of local observables. 



Matrix Product States (MPS) 

Bond dimension = Schmidt rank across cut 
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[Kitaev ’99]:  
Introduction of QMA – quantum analogue of NP. 
Finding ground states of general local Hamiltonians 

 is QMA complete. 
Conjecture: no sub-exponential size classical witness 

 for QMA-complete problems. 
 
[Aharonov, et. al. ’04][Oliveira, Terhal ’05]: 
Finding solutions to 2D systems is QMA hard. 
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 for QMA-complete problems. 
 
[Aharonov, et. al. ’04][Oliveira, Terhal ’05]: 
Finding solutions to 2D systems is QMA hard. 
 
[Aharonov, Gottesman, Irani, Kempe 07]  
QMA-complete for 1D Hamiltonians 
 
[Gottesman, Irani 09] Hard even for translation 
invariant 1D Hamiltonians 
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Area Law 

For gapped local Hamiltonians  
H = H1 + ... + Hm,  entanglement 
entropy of the ground state scales 
like surface area, rather than 
volume.  

Gapped local Hamiltonians 
spectral gap = ε = E1 – E0 = constant.        |Hi| ≤ 1  



Area Law 

For gapped local Hamiltonians  
H = H1 + ... + Hm,  entanglement 
entropy of the ground state scales 
like surface area, rather than 
volume.  

Related to Holographic Principle: Black hole entropy scales like surface area. 
 

[Vidal, Latorre, Rico, Kitaev ‘02] 
 



[Hastings ’07]: Rigorous proof for 1D systems: 
      S1D = O(exp(logd/ε)) 

     d = dimension of particle, ε = spectral gap. 
    

•  Implies 1D ground states in NP.  

1D Area Law 
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[Hastings ’07]: Rigorous proof for 1D systems: 
      S1D = O(exp(logd/ε)) 

     d = dimension of particle, ε = spectral gap. 
    

•  Implies 1D ground states in NP: poly(n) bond dimension  

1D Area Law 

[Schuch, Cirac, Verstraete ’08] Hard even when GS has poly size MPS. 
    çè satisfies area law up to log correction 



[Arad, Kitaev, Landau, Vazirani ’12] Exponential  
improvement in parameters of the 1D area law: 

 S1D = O(log3d/ε) 
 
•  Implies sublinear bond dimension MPS approximation. 

•  Sub-exponential time classical algorithm for finding 
   MPS approximation to ground state.  
 
 
Today: Algorithm that on input H1, …, Hn outputs  
  an MPS that has 1-η fidelity with |GS>.  
 
  Running time: nc(d,ε)poly(η-1), where c(d,!) = 2

O log3 d
!

!

"
##

$

%
&&



[Arad, Kitaev, Landau, Vazirani ’12] Exponential  
improvement in parameters of the 1D area law: 

 S1D = O(log3d/ε) 
 
•  Implies sublinear bond dimension MPS approximation. 

•  Sub-exponential time classical algorithm for finding 
   MPS approximation to ground state.  
 
 
Today: Algorithm that on input H1, …, Hn outputs  
  an MPS that has 1-η fidelity with |GS>.  
 
  Running time: nc(d,ε)poly(η-1), where c(d,!) = 2

O log3 d
!

!

"
##

$

%
&&

How to reconcile these +ve results with the -ve 
 results from Quantum Complexity Theory? 



spectral gap = ε = E1 – E0         
     

       |Hi| ≤ 1  

 H = H1 +!+ Hm

•  Gapped Hamiltonians: ε = E1 – E0 = constant 

•  QMA-complete instances: 1/poly(m) gap 



spectral gap = ε = E1 – E0         
     

       |Hi| ≤ 1  

 H = H1 +!+ Hm

•  Gapped Hamiltonians: ε = E1 – E0 = constant 

•  QMA-complete instances: 1/poly(m) gap 

[Schuch, Cirac, Verstraete ‘08] 

Gapped 1D Hamiltonian 
Succinct description of  
       ground state 

AGSP 1D algorithm 



AGSP: Approximate Ground State Projector 

An AGSP is an operator K that is not  
 “too complex”  and approximately   
  projects onto the ground state: 



AGSP: Approximate Ground State Projector 

An AGSP is an operator K that is not  
 “too complex”  and approximately   
  projects onto the ground state: 
•  K|GS> = |GS> 
•  Shrinks orthogonal space by Δ < 1 
•  Has low entanglement rank.  



Gap è AGSP 
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1D Problems 

Decoupling: Once you fix xi can decouple left and 
   right subproblems.   
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Classical 

Quantum: Fixing i-th qubit does not decouple.  
 
Problem: Entanglement. Schmidt rank could grow  

      with n.  
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Classical 

Quantum: Boundary contraction. Density matrix 
                  on qubit + bond 
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Classical 

Quantum: Boundary contraction. Density matrix 
                  on qubit + bond 

[Hastings ’07] Bond dimension is poly(n).  
To discretize, need an ε-net of size exp(n). 
 
[Arad, Kitaev, Landau, Vazirani ’12] Sublinear  
  bond dimension è subexponential time algorithm  

2O log2/3 n( )



Two Ideas 

1.  For any given cut, and constant δ, there is a 
    δ-approximation to |GS> with constant bond  
    dimension Bδ across that cut (and poly(n) across 
    other cuts). 
 
Pros: 
Can use a nO(δ)-net for the boundary contractions  
across this cut to perform the extension step.  
 
Cons:  
Need to repeat this process across n cuts, and the  
error will blow up.  
 
 
 



Two Ideas 

1.  For any given cut, and constant δ, there is a 
    δ-approximation to |GS> with constant bond  
    dimension Bδ across that cut (and poly(n) across 
    other cuts). 
 
2. Use an AGSP to reduce the error to 1/poly(n). 
 
 

.	  

.	  

.	  

nO(δ)	  



1.  After the i-th iteration, the algorithm constructs 
    an approximation to the left-half of |GS>.  
 
    Can measure bond to decompose into a mixture  
      of pure states on the first i qudits.   
 
2. How do we apply an AGSP to a state on i qudits? 
 
  
 
 

Upon Closer Examination 



Upon Closer Examination 

1.  After the i-th iteration, the algorithm constructs 
    an approximation to the left-half of |GS>.  
 
    Can measure bond to decompose into a mixture  
      of pure states on the first i qudits.   
 
2. How do we apply an AGSP to a state on i qudits? 
 
 
 
 
 
To get 1/poly(n) approximation, need C=poly(n).  



Major Problem 

•  What we wanted: A poly(n) cardinality set of  
    left-states on first i qudits, such that one of them  
    of cardinality poly(n), such that one of them is  
    (close to) the left-half of |GS>. 
 
•  What we obtained: a set of poly(n) states on first  
   i qudits such that their span contains the left-half 
   of (approx. to) |GS>. 



Major Problem 

•  What we wanted: A poly(n) cardinality set of  
    left-states on first i qudits, such that one of them  
    of cardinality poly(n), such that one of them is  
    (close to) the left-half of |GS>. 
 
•  What we obtained: a set of poly(n) states on first  
   i qudits such that their span contains the left-half 
   of (approx. to) |GS>. 
 
Idea: For a given boundary contraction on i+1-st 
qudit, finding a left-state which lies in the span of  
these poly(n) states on first i qudits, and with close  
to the specified boundary contraction can be expressed 
as a poly-sized convex program.  



Convex Programming Framework for 1D Algorithm 

   min Tr[Hρ] 
      Tr[ρ]=1 
         ρ≥0 

•  But SDP is over an exponential dimensional space.  
 
•  Create a polynomial dimensional envelope that is  

 guaranteed to contain a close approximation to 
 ground state.  



Viable Set 

A set S of pure states on i-qudits is (i, s, b, δ) viable if:  

•  There is a δ-approx to |GS> whose left Schmidt 
    vectors are in the span of S. 
 
•  Each element of S has an MPS representation with 
   bond dimension ≤ B. 
 
•  |S| = s 



i ài+1: Four steps 
Extension: Append a qudit. s à sd 
 
Cardinality Reduction:  
Fix a δ/n-net over the space of boundary contractions 
 of constant dimension Bδ at i+1-st boundary. 
 
 
 
 
 
 
 
Error reduction: Apply AGSP to each element of S.  
 
 
 
Bond Trimming: Truncate MPS representations. 



Analysis 



Uniform AGSP 

Assume frustration-free.  
 
I – H/n stabilizes |GS> and |H|perp>| ≤ 1 – ε/n 
 
So (I – H/n)n shrinks |perp> by constant factor 
 
 
 
 
 
 
K = Sample poly(n) terms. 
  
By matrix Chernoff bounds good approximation.  
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•  A more local algorithm? 
 
•  AGSP  
 
•  2D systems?  
 
•  Dependence on ε 

Conclusions 


