

Quantum Simulation of (non-)abelian gauge theories

Enrique Rico Ortega 13 February 2013

The team

Albert Einstein Center - Bern University

D. Banerjee

M. Bögli

P. Stebler

P. Widmer

U.-J. Wiese

Complutense University Madrid

M. Müller

Technical University Vienna

P. Rabl

IQOQI - Innsbruck University

M. Dalmonte

D. Marcos

P. Zoller

The references

Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String breaking to Evolution after a Quench Phys. Rev. Lett. 109, 175302 (2012)

Atomic Quantum Simulation of U(N) and SU(N) non-abelian Gauge Theories arXiv:1211.2242 (2012)

Quantum Simulation of Dynamical Lattice Gauge Field Theories with Superconducting Q-bits

Recent related works on dynamical gauge fields

- H. Büchler, M. Hermele, S. Huber, M.P.A. Fisher, P. Zoller, Atomic quantum simulator for lattice gauge theories and ring exchange models, Phys. Rev. Lett. 95, 40402 (2005).
- H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, H.P. Büchler, A [digital] open system Rydberg quantum simulator, Nat. Phys. 6, 382 (2010).
 - J.I. Cirac, P. Maraner, J.K. Pachos, Cold Atom Simulation of Interacting Relativistic Quantum Field Theories, Phys. Rev. Lett. 105, 190403 (2010).
- E. Kapit, E. Mueller, Optical-lattice Hamiltonians for relativistic quantum electrodynamics, Phys. Rev. A 83, (2011).
 - E. Zohar, J.I. Cirac, B. Reznik, Simulating Compact Quantum Electrodynamics with ultracold atoms: Probing confinement and nonperturbative effects, Phys. Rev. Lett. 109, 125302 (2012).
- L. Tagliacozzo, A. Celi, A. Zamora, M. Lewenstein, Optical Abelian Lattice Gauge Theories, Ann. Phys. 330, 160-191 (2013).

Barcelona, Bern, Innsbruck, Leeds, Madrid, Munich, New York, Stuttgart, Tel Aviv, ...

... and on dynamical non-abelian gauge fields

E. Zohar, J.I. Cirac, B. Reznik, A cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory, arXiv:1211.2241 (2012).

L. Tagliacozzo, A. Celi, P. Orland, M. Lewenstein, Simulations of non-Abelian gauge theories with optical lattices, arXiv:1211.2704 (2012).

Barcelona, Bern, Innsbruck, Leeds, Madrid, Munich, New York, Stuttgart, Tel Aviv, ...

The study of <u>Gauge</u> theories is the study of <u>Nature</u>.

The study of <u>Gauge</u> theories is the study of <u>Nature</u>.

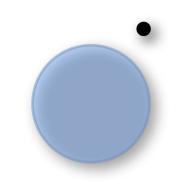
Gauge symmetry as a fundamental principle

The study of <u>Gauge</u> theories is the study of <u>Nature</u>.

Gauge symmetry as a fundamental principle

Gauge symmetry as an emergent phenomenon

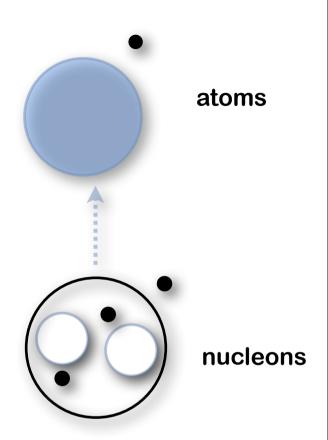
The study of <u>Gauge</u> theories is the study of <u>Nature</u>.


Gauge symmetry as a fundamental principle

Gauge symmetry as an emergent phenomenon

Gauge symmetry as a resource

Standard model: for every force there is a gauge boson,

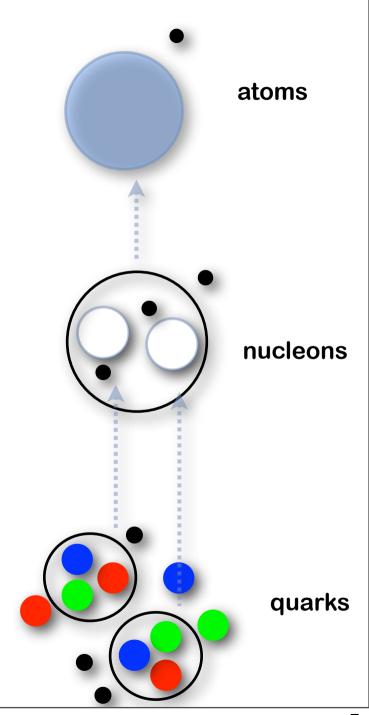

atoms

• The photon is the "carrier" of the electromagnetic force.

Standard model: for every force there is a gauge boson,

• The photon is the "carrier" of the electromagnetic force.

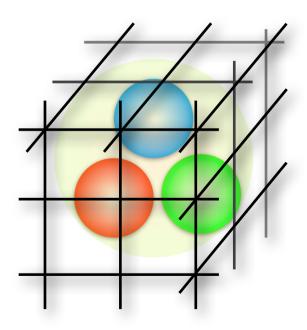
 The W⁺, W⁻ and Z⁰ are the "carriers" of the weak force.



Standard model: for every force there is a gauge boson,

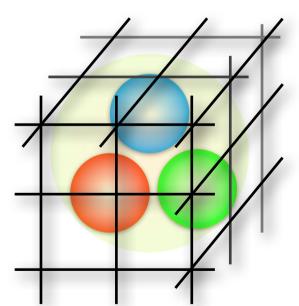
• The photon is the "carrier" of the electromagnetic force.

• The W⁺, W⁻ and Z⁰ are the "carriers" of the weak force.


 The gluons are the "carriers" of the strong force.

Gauge theories on a discrete lattice structure.

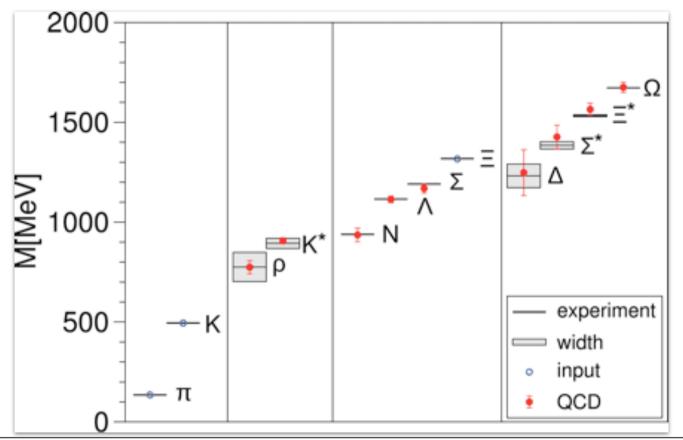
Non-perturbative approach to fundamental theories of matter, e.g. Q.C.D.


K. Wilson, Phys. Rev. D (1974)

Gauge theories on a discrete lattice structure.

Non-perturbative approach to fundamental theories of matter, e.g. Q.C.D.

K. Wilson, Phys. Rev. D
$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D} \left[\psi, U \right] e^{-S[\psi, U]} O \left[\psi, U \right]$$


$$\sim \frac{1}{N} \sum_{n=1}^{N} e^{-S[\psi_n, U_n]} O[\psi_n, U_n]$$

$$\sim rac{1}{N} \sum_{P[U_n] \propto e^{-S[\psi_n,U_n]}} O\left[\psi_n,U_n
ight]$$
 ation = Classical Statistical Mechanics

Monte Carlo simulation = Classical Statistical Mechanics

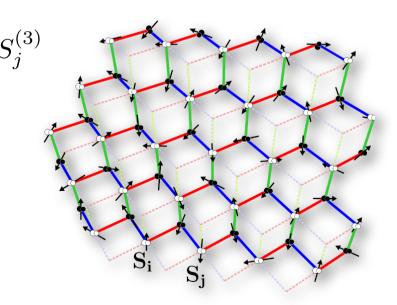
Achievements by classical Monte-Carlo simulations:

- first evidence of quark-gluon plasma
- ab-initio estimate of the entire hadronic spectrum

S. Dürr, et al., Science (2008)

Gauge bosons can appear as collective fluctuations of a strongly correlated many-body quantum system

F. Wegner, J. Math. Phys. (1971)
J.B. Kogut, Rev. Mod. Phys. (1979)
A. Kitaev, Ann. Phys. (2003)
P.A. Lee, N. Nagaosa, X.G. Wen,
Rev. Mod. Phys. (2006)


Gauge bosons can appear as collective fluctuations of a strongly correlated many-body quantum system

Ex.- Kitaev model (Z₂ gauge theory)

F. Wegner, J. Math. Phys. (1971)
J.B. Kogut, Rev. Mod. Phys. (1979)
A. Kitaev, Ann. Phys. (2003)
P.A. Lee, N. Nagaosa, X.G. Wen,
Rev. Mod. Phys. (2006)

$$H = J_1 \sum_{1\langle i,j \rangle} S_i^{(1)} S_j^{(1)} + J_2 \sum_{2\langle i,j \rangle} S_i^{(2)} S_j^{(2)} + J_3 \sum_{3\langle i,j \rangle} S_i^{(3)} S_j^{(3)}$$

$$\to \frac{J_1^2 J_2^2}{16|J_3|^3} \left(\sum_{\text{vertex}} XXXXX + \sum_{\text{plaq}} ZZZZZ \right)$$

 $|J_3| \gg \{|J_1|, |J_2|\}$

Some questions:

(i) fractionalization,

(ii) confinement-deconfinement quantum phase transition,

(iii) spin-liquid physics...

Some questions: fractionalization,

- (i) fractionalization,(ii) confinement-deconfinement quantum phase transition,
- (iii) spin-liquid physics...

Volume 94B, number 2

PHYSICS LETTERS

28 July 1980

DYNAMICAL STABILITY OF LOCAL GAUGE SYMMETRY

Creation of Light From Chaos

D. FOERSTER H.B. NIELSEN

M. NINOMIYA

And God said "Let there be light", and there was light - Genesis 1-3

We show that the large distance behavior of gauge theories is stable, within certain limits, with respect to addition of gauge noninvariant interactions at small distances.

PHYSICAL REVIEW B 68, 115413 (2003)

Artificial light and quantum order in systems of screened dipoles

Xiao-Gang Wen*

Gauge symmetry as a resource

Topological quantum computation: Deconfined phases of gauge models may have excitations with non-abelian statistics and degenerate ground states.

A. Kitaev, Ann. Phys. (2003) M.H. Freedman, A. Kitaev, M.J. Larsen, Z. Wang, Bull. Amer. Math. Soc. (2003) C. Navak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. (2008)

Some questions:

- new materials,
- how to create and manipulate quasi-particles.

Problems not solvable on a classical machines

Various flavors of sign problems in strongly correlated systems

Real time evolution: Heavy ion experiments (collisions)

Why quantum simulate Gauge theories?

Real time evolution:

Heavy ion experiments (collisions)

QCD with finite density of fermions:

Dense nuclear matter, color superconductivity (phase diagram of QCD)

S. Hands, Contemp. Phys. (2001) M.G. Alford, A. Schmitt, K. Rajagopal, T. Schäfer, Rev. Mod. Phys. (2008)

K. Fukushima, T. Hatsuda, Rep. Prog. Phys. (2011)

Why quantum simulate Gauge theories?

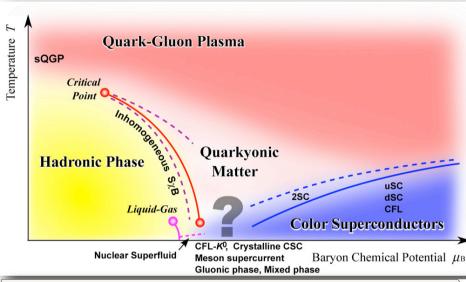
Real time evolution:

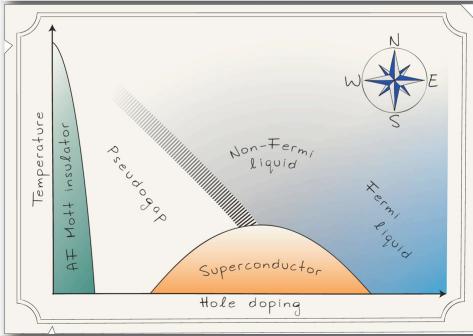
Heavy ion experiments (collisions)

QCD with finite density of fermions:

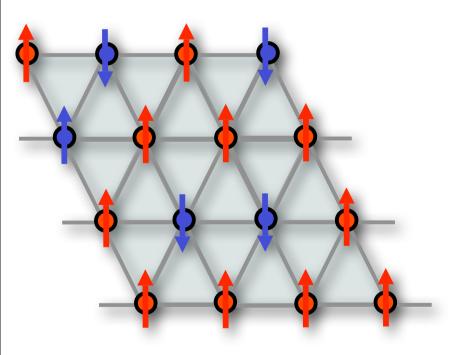
Dense nuclear matter, color superconductivity (phase diagram of QCD)

S. Hands, Contemp. Phys. (2001) M.G. Alford, A. Schmitt, K. Rajagopal, T. Schäfer, Rev. Mod. Phys. (2008)


K. Fukushima, T. Hatsuda, Rep. Prog. Phys. (2011)


Frustrated spin models:

Spin liquid physics, RVB states (High Tc superconductivity?)


E. Dagotto, Science (2005)
M.R. Norman, D. Pines, C. Kallinl,
Adv. Phys. (2005)
P. Wahl, Nat. Phys. (2012)

Why quantum simulate Gauge theories?

Feynman: "It is difficult to simulate quantum physics on a classical computer"

R.P. Feynman, Int. J. Theor. Phys. (1982)

Entanglement

$$|\psi\rangle=c_1|\uparrow\uparrow\cdots\uparrow\rangle+c_2|\uparrow\uparrow\cdots\downarrow\rangle+\cdots+c_{2^N}\downarrow\downarrow\cdots\downarrow\rangle$$
 Huge

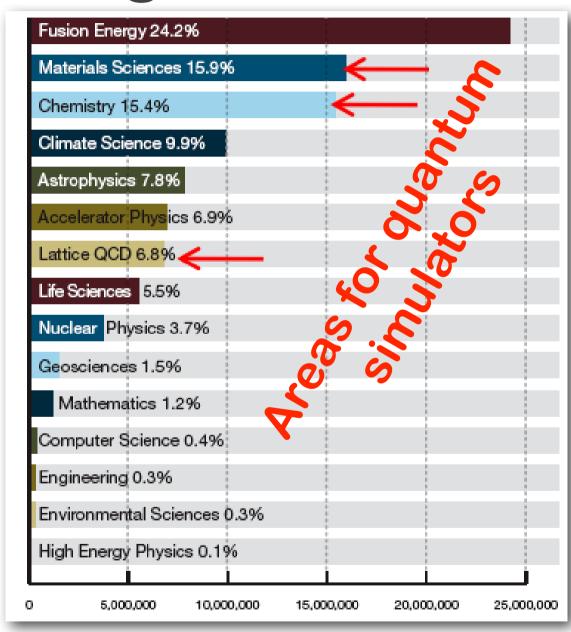
Feynman's universal quantum simulator: controlled quantum device which efficiently reproduces the dynamics of any other many-particle quantum system.

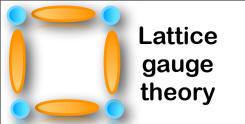
Feynman's universal quantum simulator: controlled quantum device which efficiently reproduces the dynamics of any other many-particle quantum system.

How?... cold atoms, ions, photons, superconducting circuit, etc.

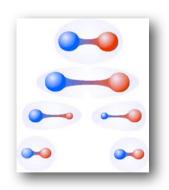
J.I. Cirac, P. Zoller
I. Bloch, J. Dalibard, S. Nascimbène
R. Blatt, C.F. Roos,
A. Aspuru-Guzik, P. Walther
A.A. Hock, H.E. Türeci, J. Koch
Nature Physics Insight Quantum Simulation (2012)

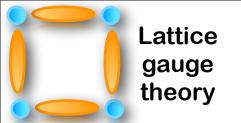
NEED

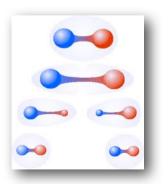

Design a controlled microscopic quantum simulator for lattice gauge theories.

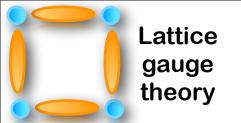

AIM

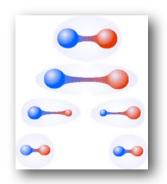
Investigate relevant phenomena, e.g., characterize the phase diagram and dynamics of strongly coupled lattice gauge models.

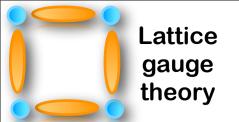

17

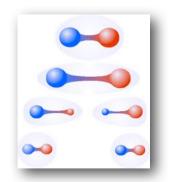


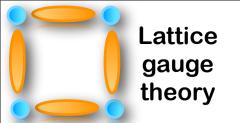


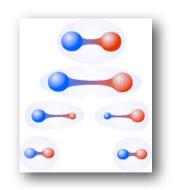

- ullet ψ_x : fermion
- ullet $U_{x,x+1}$: boson
- Hamiltonian formulation of lattice gauge theories. [degrees of freedom, symmetry generators, dynamics]

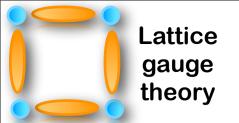


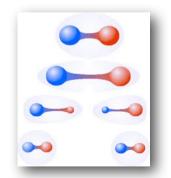

- ullet ψ_x : fermion
- ullet $U_{x,x+1}$: boson
- Hamiltonian formulation of lattice gauge theories. [degrees of freedom, symmetry generators, dynamics]
- Wilson lattice gauge formulation vs. Quantum link models. [connections with quantum information and condensed matter]




- ullet ψ_x : fermion
- $U_{x,x+1} : \mathsf{boson}$
- Hamiltonian formulation of lattice gauge theories. [degrees of freedom, symmetry generators, dynamics]
- Wilson lattice gauge formulation vs. Quantum link models.
 [connections with quantum information and condensed matter]
- Phenomenology. [confinement, string-breaking, quark-gluon plasma]



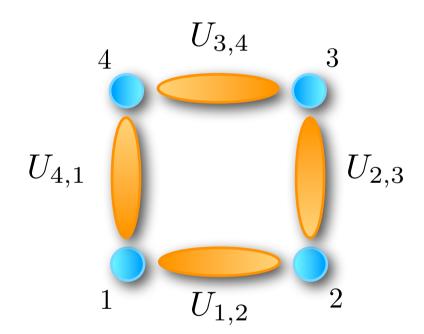

- ullet ψ_x : fermion
- $U_{x,x+1} : \mathsf{boson}$
- Hamiltonian formulation of lattice gauge theories. [degrees of freedom, symmetry generators, dynamics]
- Wilson lattice gauge formulation vs. Quantum link models.
 [connections with quantum information and condensed matter]
- Phenomenology. [confinement, string-breaking, quark-gluon plasma]
- Implementation of quantum link models. [Bose-fermi mixture, fermionic alkaline earth atoms, superconducting q-bits]


- ullet ψ_x : fermion
- $U_{x,x+1} : \mathsf{boson}$
- Hamiltonian formulation of lattice gauge theories. [degrees of freedom, symmetry generators, dynamics]
- Wilson lattice gauge formulation vs. Quantum link models.
 [connections with quantum information and condensed matter]
- Phenomenology. [confinement, string-breaking, quark-gluon plasma]
- Implementation of quantum link models. [Bose-fermi mixture, fermionic alkaline earth atoms, superconducting q-bits]
- Observability of interesting phenomena

Contents

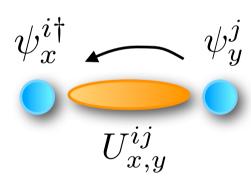
- ullet ψ_x : fermion
- ullet $U_{x,x+1}$: boson
- Hamiltonian formulation of lattice gauge theories. [degrees of freedom, symmetry generators, dynamics]
- Wilson lattice gauge formulation vs. Quantum link models.
 [connections with quantum information and condensed matter]
- Phenomenology. [confinement, string-breaking, quark-gluon plasma]
- Implementation of quantum link models. [Bose-fermi mixture, fermionic alkaline earth atoms, superconducting q-bits]
- Observability of interesting phenomena

String breaking


Conclusions & Outlook

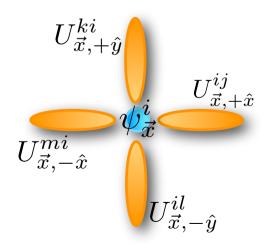
A gauge invariant model is defined by:

Set of local dynamical operators acting on the vertices (matter fields) and on the links (gauge fields)


A gauge invariant model is defined by:

Set of local dynamical operators acting on the vertices (matter fields) and on the links (gauge fields)

J.B. Kogut, L. Susskind, PRD (1975)


ref. Creutz and Montvay/Muenster books J.B. Kogut, Rev. Mod. Phys. (1979)

(operator acting on a Hilbert space)

$$i = \begin{cases} 1 &: U(1) \\ \uparrow \downarrow &: U(2) \\ brg &: U(3) \end{cases}$$

Set of local generators of gauge transformations

Set of local generators of gauge transformations

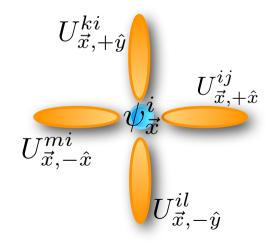
Generators of the local symmetry:

$$e^{i\sum_{z}\vec{\theta}_{z}\vec{G}_{z}}\psi_{x}^{i}e^{-i\sum_{z}\vec{\theta}_{z}\vec{G}_{z}} = \sum_{j}\Omega_{x}^{ij}\psi_{x}^{j}$$

$$e^{i\sum_{z}\vec{\theta}_{z}\vec{G}_{z}}U_{x,y}^{ij}e^{-i\sum_{z}\vec{\theta}_{z}\vec{G}_{z}} = \sum_{k,l}\Omega_{x}^{ik}U_{x,y}^{kl}\Omega_{y}^{jl*}$$

$$U_{\vec{x},-\hat{x}}^{ii}$$

$$U_{\vec{x},-\hat{y}}^{ii}$$

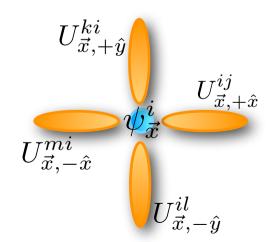

21

Set of local generators of gauge transformations

Define the Hilbert space:

$$\vec{G}_x|\text{physical}\rangle = 0$$

$$\sum_{x} \left(\vec{G}_{x} \right)^{2} = \begin{bmatrix} \begin{bmatrix} 0 \\ \end{bmatrix} \\ \begin{bmatrix} 1 \end{bmatrix}$$



Block-diagonal Hilbert space

Set of local generators of gauge transformations

$$G_x = \psi_x^\dagger \psi_x - \sum_{\hat{\mu}} E_{x,x+\hat{\mu}} - E_{x-\hat{\mu},x}$$
 matter $\hat{\mu}$ electric field

$$\left[
ho - ec{
abla} \cdot ec{E}
ight]_{
m phys} = 0$$
 : Gauss' law

Gauge invariant quantum Hamiltonian:

$$\left[H, \vec{G} \right] = 0 \quad \forall x$$

Local conserved quantities Gauge (local) symmetries

Wilson formulation:

continuum valued operator, infinite-dimensional local Hilbert space

ex.- U(1) group

$$U_{x,y} \to e^{i\phi_{x,y}}$$

$$E_{x,y} \to -i \frac{\partial}{\partial \phi_{x,y}}$$

Implementation in AMO setup very challenging

E. Kapit, E. Mueller, Phys. Rev. A (2011) E. Zohar, B. Reznik, Phys. Rev. Lett. (2011)

Quantum link formulation: gauge fields span a finite-dimensional local Hilbert space

D. Horn, Phys. Lett. B (1981)
P. Orland, D. Röhrlich, Nucl. Phys. B (1990)
S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B (1997)

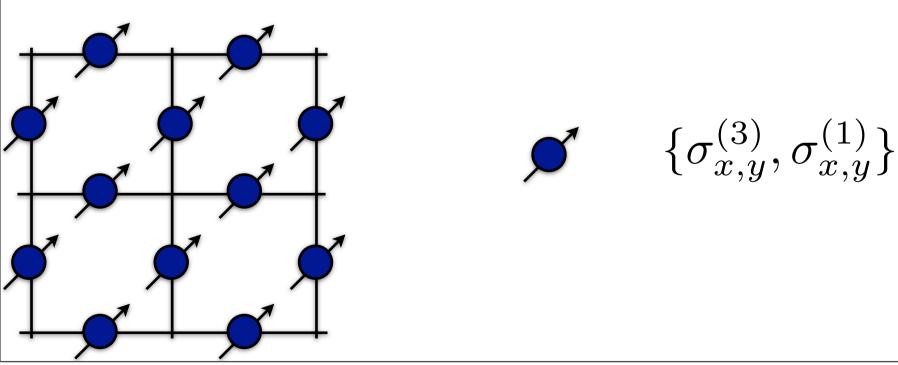
Quantum link formulation: gauge fields span a finite-dimensional local Hilbert space

D. Horn, Phys. Lett. B (1981)
P. Orland, D. Röhrlich, Nucl. Phys. B (1990)
S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B (1997)

Q.C.D. can be formulated as a non-abelian quantum link model

R. Brower, S. Chandrasekharan, U.-J. Wiese, Phys. Rev. D (1999) R. Brower, S. Chandrasekharan, S. Riederer, U.-J. Wiese, Nucl. Phys. B (2004)

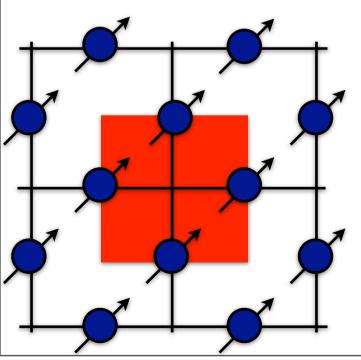
Quantum Link models Connections with Quantum Information (Z₂ gauge theory-Kitaev model)


H. Weimar, M. Müller, I. Lesanovsky, P. Zoller, H.P. Büchler, Nat. Phys. (2010)

Connections with Quantum Information (Z₂ gauge theory-Kitaev model)

H. Weimar, M. Müller, I. Lesanovsky, P. Zoller, H.P. Büchler, Nat. Phys. (2010)

Local degrees of freedom.-

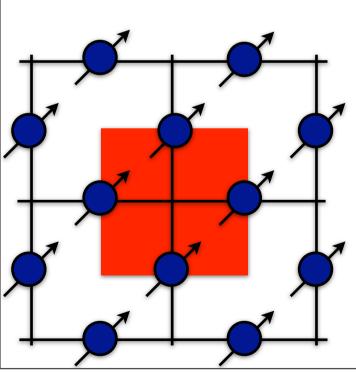

Quantum two level system living on the link

Connections with Quantum Information (Z₂ gauge theory-Kitaev model)

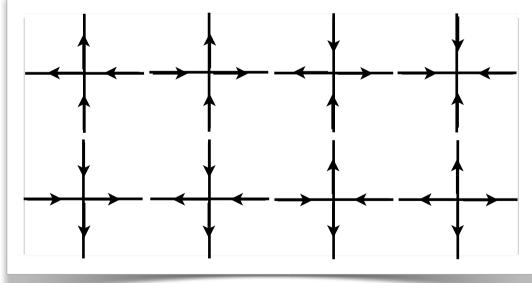
Local generator of gauge transformations.-

Local unitary transformation around every vertex

$$G_{\text{vert}} = \sigma_{1,2}^{(1)} \sigma_{2,3}^{(1)} \sigma_{3,4}^{(1)} \sigma_{4,1}^{(1)}$$


$$G_{\text{vert}} \ \sigma_{1,2}^{(3)} \ G_{\text{vert}} = -\sigma_{1,2}^{(3)}$$

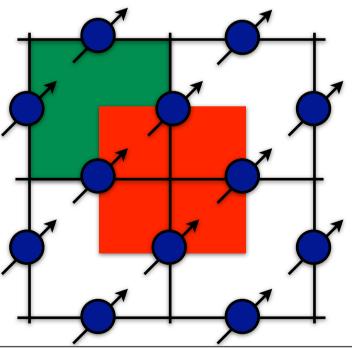
Z₂ gauge transformation


Connections with Quantum Information (Z₂ gauge theory-Kitaev model)

Local generator of gauge transformations.-

"Physical" Hilbert space (Gauss' law)

$$G_{\text{vert}}|\text{phys}\rangle = |\text{phys}\rangle$$



8-vertex model: equal parity subspace

Connections with Quantum Information (Z₂ gauge theory-Kitaev model)

Gauge invariant Hamiltonian.-

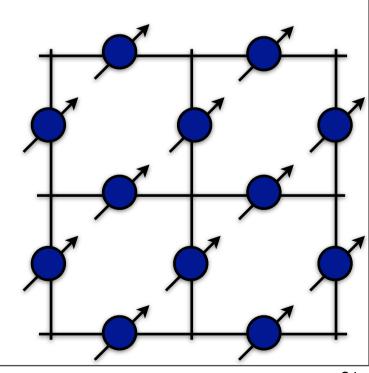
$$H = -\sum_{\text{plaq}} \sigma_{1,2}^{(3)} \sigma_{2,3}^{(3)} \sigma_{3,4}^{(3)} \sigma_{4,1}^{(3)} + \lambda \sum_{\langle x,y \rangle} \sigma_{x,y}^{(1)}$$

magnetic term

electric term

$$[H, G_{\text{vert}}] = 0, \quad \forall \text{ vertex}$$

Quantum Link models Connections with Condensed Matter (U(1) gauge theory-Quantum Spin Ice model)

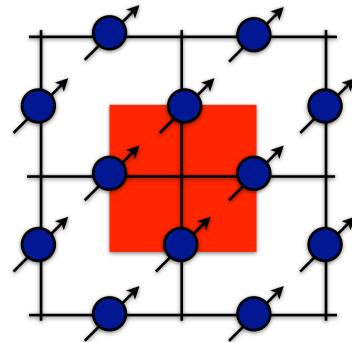

Local degrees of freedom.-

Quantum two level system living on the link

$$\{\sigma_{x,y}^{(3)}, \sigma_{x,y}^{(+)}, \sigma_{x,y}^{(-)}\}$$

L. Balents, Nature (2010) C. L. Henley, Ann. Rev. Cond. Matt. Phys. (2010) C. Castelnovo, R. Moessner, and S.L. Sondhi, Ann. Rev. Cond. Matt. Phys. (2012)

Connections with Condensed Matter (U(1) gauge theory-Quantum Spin Ice model)

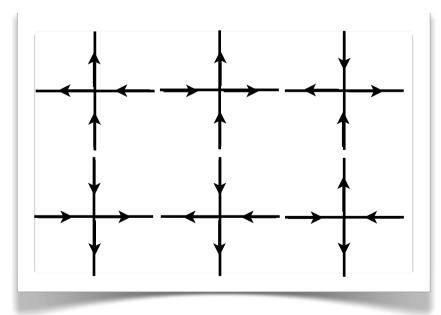

Local generator of gauge transformations.-

Local generator around every vertex

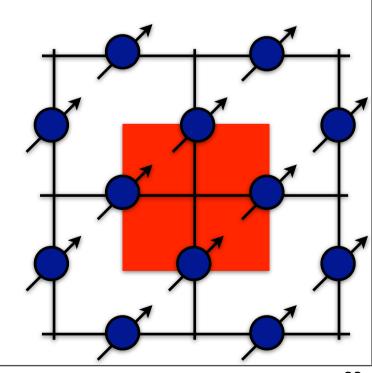
$$\exp\left[i\frac{\theta_{\text{vert}}}{2}G_{\text{vert}}\right]\sigma_{1,2}^{(+)}\exp\left[-i\frac{\theta_{\text{vert}}}{2}G_{\text{vert}}\right] = e^{i\theta_{\text{vert}}}\sigma_{1,2}^{(+)}$$

$$G_{\text{vert}} = \sigma_{1,2}^{(3)} + \sigma_{2,3}^{(3)} + \sigma_{3,4}^{(3)} + \sigma_{4,1}^{(3)}$$

U(1) gauge transformation



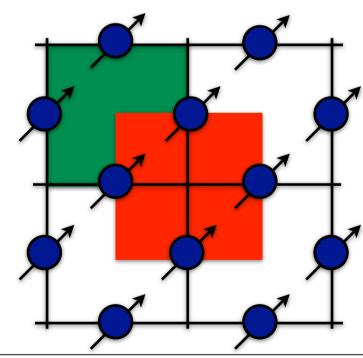
Connections with Condensed Matter (U(1) gauge theory-Quantum Spin Ice model)


Local generator of gauge transformations.-

"Physical" Hilbert space (Gauss' law)

$$G_{\text{vert}}|\text{phys}\rangle = 0$$

6-vertex model: zero magnetization subspace


Connections with Condensed Matter (U(1) gauge theory-Quantum Spin Ice model)

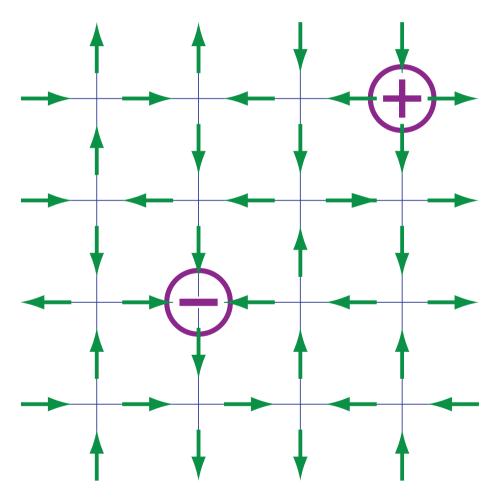
Gauge invariant Hamiltonian.-

$$H = -\sum_{\text{plaq}} \left[\sigma_{1,2}^+ \sigma_{2,3}^- \sigma_{3,4}^+ \sigma_{4,1}^- + \sigma_{1,2}^- \sigma_{2,3}^+ \sigma_{3,4}^- \sigma_{4,1}^+ \right]$$

magnetic term

$$[H, G_{\text{vert}}] = 0, \quad \forall \text{ vertex}$$

Local degrees of freedom.-


Quantum link carrying an electric flux

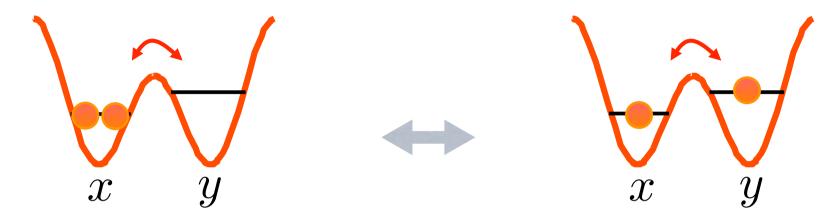
$$U_{x,y} \equiv S_{x,y}^+$$

$$E_{x,y} \equiv S_{x,y}^{(3)}$$

Gauss' law.-

$$G_{\text{vert}}|\text{phys}\rangle = 0 \Leftrightarrow \vec{\nabla} \cdot \vec{E} = 0$$

configuration obeying ice rules, except for defects (charge or monopoles)


Gauge invariant Hamiltonian.-

$$H = \frac{g^2}{2} \sum_{\langle x,y \rangle} \left[E_{x,y} \right]^2 - \frac{1}{4g^2} \sum_{\text{plaq}} \left[U_{1,2}^{\dagger} U_{2,3} U_{3,4}^{\dagger} U_{4,1} + U_{1,2} U_{2,3}^{\dagger} U_{3,4} U_{4,1} \right]$$

Electric term

Magnetic term

Rishon (Schwinger) representation

Link operator

$$U_{x,y} \equiv S_{x,y}^+ = c_y^{\dagger} c_x$$

Electric field [U(1) generator]

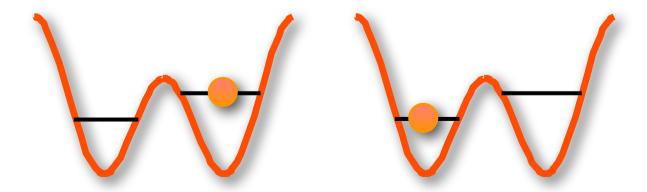
$$E_{x,y} \equiv S_{x,y}^{(3)} = \frac{1}{2} \left[c_y^{\dagger} c_y - c_x^{\dagger} c_x \right]$$

$$\{c_x, c_y^{\dagger}\} = \delta_{x,y}$$

$$[c_x, c_y^{\dagger}] = \delta_{x,y}$$

Schwinger fermions (rishons)

Schwinger bosons

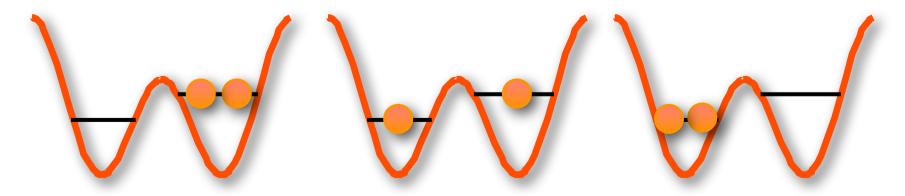

Quantum Link models Rishon (Schwinger) representation

Spin representation:

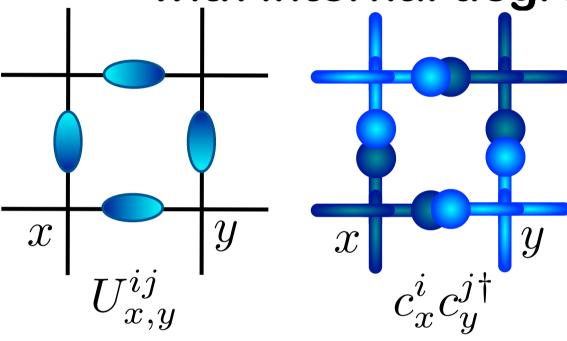
$$N_{x,y} = c_y^{\dagger} c_y + c_x^{\dagger} c_x$$

$$N_{x,y} = c_y^{\dagger} c_y + c_x^{\dagger} c_x$$
 $\left[\vec{S}_{x,y} \right]^2 \equiv \frac{N_{x,y}}{2} \left[\frac{N_{x,y}}{2} + 1 \right]^2$

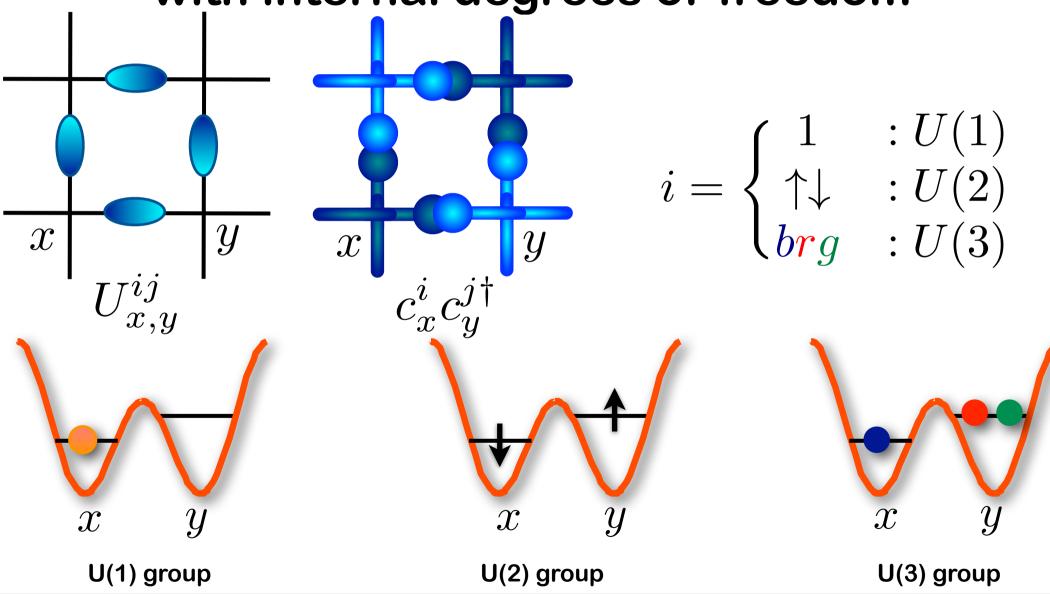
Spin-1/2:


Quantum Link models Rishon (Schwinger) representation

Spin representation:


$$N_{x,y} = c_y^{\dagger} c_y + c_x^{\dagger} c_x$$

$$N_{x,y} = c_y^{\dagger} c_y + c_x^{\dagger} c_x$$
 $\left[\vec{S}_{x,y} \right]^2 \equiv \frac{N_{x,y}}{2} \left[\frac{N_{x,y}}{2} + 1 \right]^2$


Spin-1:

Rishon (Schwinger) representation with internal degrees of freedom

Rishon (Schwinger) representation with internal degrees of freedom

Rishon (Schwinger) representation with internal degrees of freedom

Local degrees of freedom.-

Link operator

$$U_{x,y}^{ij} \equiv c_x^i c_y^{j\dagger}$$

Electric field [U(1) generator]

$$E_{x,y} \equiv \frac{1}{2} \left[c_y^{i\dagger} c_y^i - c_x^{i\dagger} c_x^i \right]$$

Representation [occupation]

$$N_{x,y} = c_y^{i\dagger} c_y^i + c_x^{i\dagger} c_x^i$$

Rishon (Schwinger) representation with internal degrees of freedom

Local degrees of freedom.-

Non-abelian electric fields [SU(N) generators]

Left generators

Right generators

$$L_{x,y}^a = c_x^{i\dagger} \lambda_{ij}^a c_x^i$$

$$R_{x,y}^a = c_y^{i\dagger} \lambda_{ij}^a c_y^i$$

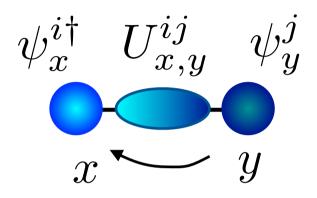
$$\exp\left[i\theta_x^a L_{x,y}^a\right] U_{x,y} \exp\left[-i\theta_x^a L_{x,y}^a\right] = \exp\left[-i\theta_x^a \lambda^a\right] U_{x,y}$$

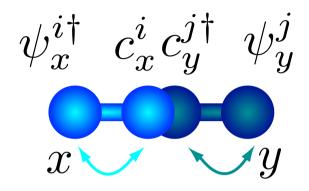
$$\exp\left[i\theta_y^a R_{x,y}^a\right] U_{x,y} \exp\left[-i\theta_y^a R_{x,y}^a\right] = U_{x,y} \exp\left[i\theta_y^a \lambda^a\right]$$

Rishon (Schwinger) representation with internal degrees of freedom

Local generators.-

$$G_x = -\sum_{k} \left(E_{x,x+\hat{k}} - E_{x-\hat{k},x} \right)$$


$$G_x^a = \sum_{k} \left(L_{x,x+\hat{k}}^a + R_{x-\hat{k},x}^a \right)$$


Rishon (Schwinger) representation with internal degrees of freedom

Hamiltonian.-

$$H = \frac{g'^2}{2} \sum_{\langle x,y \rangle} (E_{x,y})^2 + \frac{g^2}{2} \sum_{\langle x,y \rangle} \left[\left(\vec{L}_{x,y} \right)^2 + \left(\vec{R}_{x,y} \right)^2 \right]$$
$$- \frac{1}{4g^2} \sum_{\text{plag}} \left[U_{1,2}^{\dagger} U_{2,3} U_{3,4}^{\dagger} U_{4,1} + U_{1,2} U_{2,3}^{\dagger} U_{3,4} U_{4,1}^{\dagger} \right]$$

Non-abelian quantum link models with matter

$$H = -t \sum_{\langle x, y \rangle, i, j} \left(\psi_x^{i\dagger} U_{x, y}^{ij} \psi_y^j + \text{h.c.} \right) + \dots = -t \sum_{\langle x, y \rangle} \left[\left(\sum_i \psi_x^{i\dagger} c_x^i \right) \left(\sum_j c_y^{j\dagger} \psi_y^j \right) + \text{h.c.} \right] + \dots$$

Matter - gauge interaction

= hopping of fermions mediated by a quantum link

= correlated hopping of fermions and rishons

Non-abelian quantum link models with matter

Local generators.-

$$G_x = \psi_x^{i\dagger} \psi_x^i - \sum_k \left(E_{x,x+\hat{k}} - E_{x-\hat{k},x} \right)$$

$$G_x^a = \psi_x^{i\dagger} \lambda_{ij}^a \psi_x^j + \sum_k \left(L_{x,x+\hat{k}}^a + R_{x-\hat{k},x}^a \right)$$

"Physical" Hilbert space

$$\vec{G}_x | \text{phys} \rangle = 0 \quad \forall x$$

Non-abelian quantum link models with matter

Hamiltonian.-

$$[H, G_x] = [H, G_x^a] = 0 \qquad \forall x$$

Strong coupling Hamiltonian with staggered fermions

$$H = \frac{g^{2}}{2} \sum_{\langle x,y \rangle} (E_{x,y})^{2} + \frac{g^{2}}{2} \sum_{\langle x,y \rangle} \left[\left(\vec{L}_{x,y} \right)^{2} + \left(\vec{R}_{x,y} \right)^{2} \right] - t \sum_{\langle x,y \rangle, i,j} \left(\psi_{x}^{i\dagger} U_{x,y}^{ij} \psi_{y}^{j} + \text{h.c.} \right) + m \sum_{x,i} (-1)^{x} \psi_{x}^{i\dagger} \psi_{x}^{i}$$

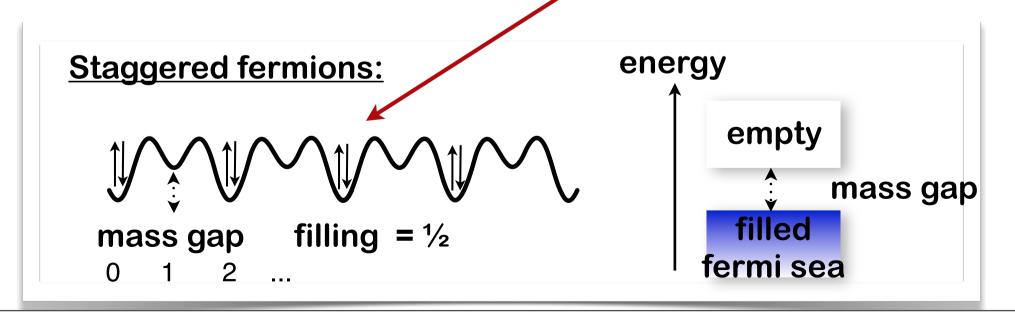
Non-abelian electric field

Electric field

Matter-gauge interaction

Staggered mass

Non-abelian quantum link models


Strong coupling Hamiltonian with staggered fermions

$$H = \frac{g'^2}{2} \sum_{\langle x, y \rangle} (E_{x,y})^2 + \frac{g^2}{2} \sum_{\langle x, y \rangle} \left[\left(\vec{L}_{x,y} \right)^2 + \left(\vec{R}_{x,y} \right)^2 \right] - t \sum_{\langle x, y \rangle, i, j} \left(\psi_x^{i\dagger} U_{x,y}^{ij} \psi_y^j + \text{h.c.} \right) + m \sum_{x, i} (-1)^x \psi_x^{i\dagger} \psi_x^i$$

Non-abelian electric field

Electric field

Matter-gauge interaction

Confinement and string breaking: QED in 1+1D (Schwinger model)

Gauss' law

$$G_x = \psi_x^{\dagger} \psi_x + \frac{(-1)^x - 1}{2} - (E_{x,x+1} - E_{x-1,x})$$

$$G_x|\text{phys}\rangle = 0 \Leftrightarrow \rho - \vec{\nabla} \cdot \vec{E} = 0$$

Spin-1 representation

$$|1\rangle$$

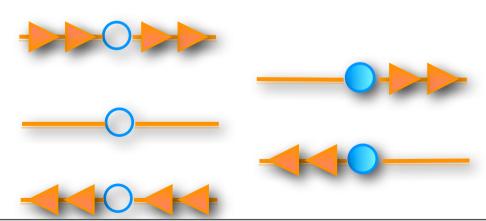
$$|+1\rangle$$

Confinement and string breaking: QED in 1+1D (Schwinger model)

Gauss' law

$$G_x = \psi_x^{\dagger} \psi_x + \frac{(-1)^x - 1}{2} - (E_{x,x+1} - E_{x-1,x})$$

$$G_x|\text{phys}\rangle = 0 \Leftrightarrow \rho - \vec{\nabla} \cdot \vec{E} = 0$$


Spin-1 representation

$$|1\rangle$$

Even sites

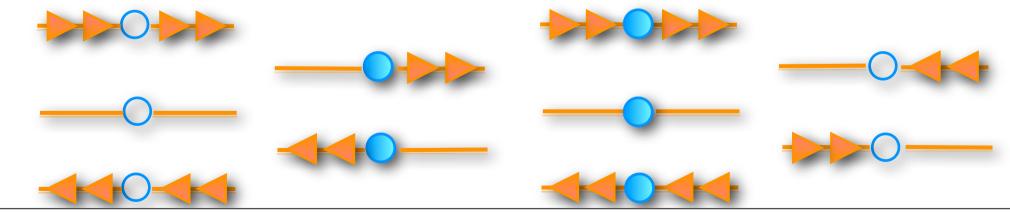
Confinement and string breaking: QED in 1+1D (Schwinger model)

Gauss' law

$$G_x = \psi_x^{\dagger} \psi_x + \frac{(-1)^x - 1}{2} - (E_{x,x+1} - E_{x-1,x})$$

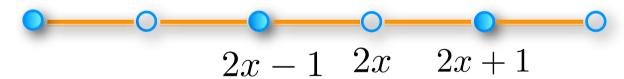
$$G_x|\text{phys}\rangle = 0 \Leftrightarrow \rho - \vec{\nabla} \cdot \vec{E} = 0$$

Spin-1 representation


$$|0\rangle$$

$$|1\rangle$$

Even sites


Odd sites

Confinement and string breaking: QED in 1+1D (Schwinger model)

Vacuum state

$$H = \frac{g^2}{2} \sum_{\langle x,y \rangle} \left(S_{x,y}^{(3)} \right)^2 + m \sum_{x} (-1)^x \psi_x^{\dagger} \psi_x$$

Creating a quark - antiquark pair:

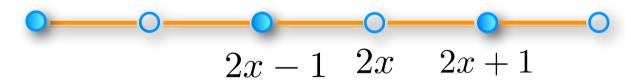
$$\psi_{2x}^{\dagger} S_{2x,2x+1}^{+} \psi_{2x+1}$$

Confinement and string breaking: QED in 1+1D (Schwinger model)

Vacuum state

$$H = \frac{g^2}{2} \sum_{\langle x,y \rangle} \left(S_{x,y}^{(3)} \right)^2 + m \sum_{x} (-1)^x \psi_x^{\dagger} \psi_x$$

Creating a quark - antiquark pair:


$$\psi_{2x}^{\dagger} S_{2x,2x+1}^{+} \psi_{2x+1}$$

Confinement and string breaking: QED in 1+1D (Schwinger model)

Vacuum state

$$H = \frac{g^2}{2} \sum_{\langle x,y \rangle} \left(S_{x,y}^{(3)} \right)^2 + m \sum_{x} (-1)^x \psi_x^{\dagger} \psi_x$$

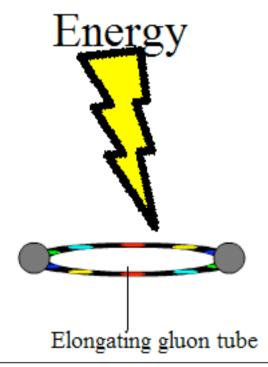
Creating a quark - antiquark pair:

$$\psi_{2x}^{\dagger} S_{2x,2x+1}^{+} \psi_{2x+1}$$

Confinement and string breaking: QED in 1+1D (Schwinger model)

Confinement and string breaking: QED in 1+1D (Schwinger model)

Confinement and string breaking: QED in 1+1D (Schwinger model)



Confinement and string breaking: QED in 1+1D (Schwinger model)

Confinement and string breaking: QED in 1+1D (Schwinger model)

Confinement and string breaking: QED in 1+1D (Schwinger model)

Microscopic picture:

$$E_{\text{string}} = \frac{g^2}{2} \left(L - 1 \right) - \frac{Lm}{2}$$

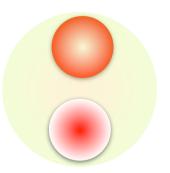
$$E_{\text{meson}} = g^2 - \frac{(L-2)m}{2}$$

$$L_{\text{c}} = 2 + \frac{2m}{g^2}$$

Quantum Chromodynamics: Confinement under normal conditions

Quarks and gluons carry a color charge

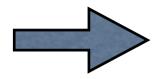
$$\psi_x^i$$



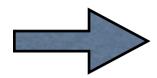
Quarks are confined into color-neutral (color singlet) bound states (hadrons)

qqq baryons: proton, neutron, ...

qq mesons: pions (lightest), kaon, rho, ...



Quarks interact by exchanging gluons


$$\psi_x^{i\dagger} U_{x,y}^{ij} \psi_y^j$$

QCD under extreme conditions

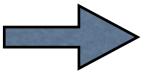
Compress or heat baryons

Hadrons overlap

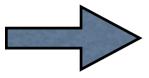
Confinement is "lost"

Expect interesting/unsual behaviour

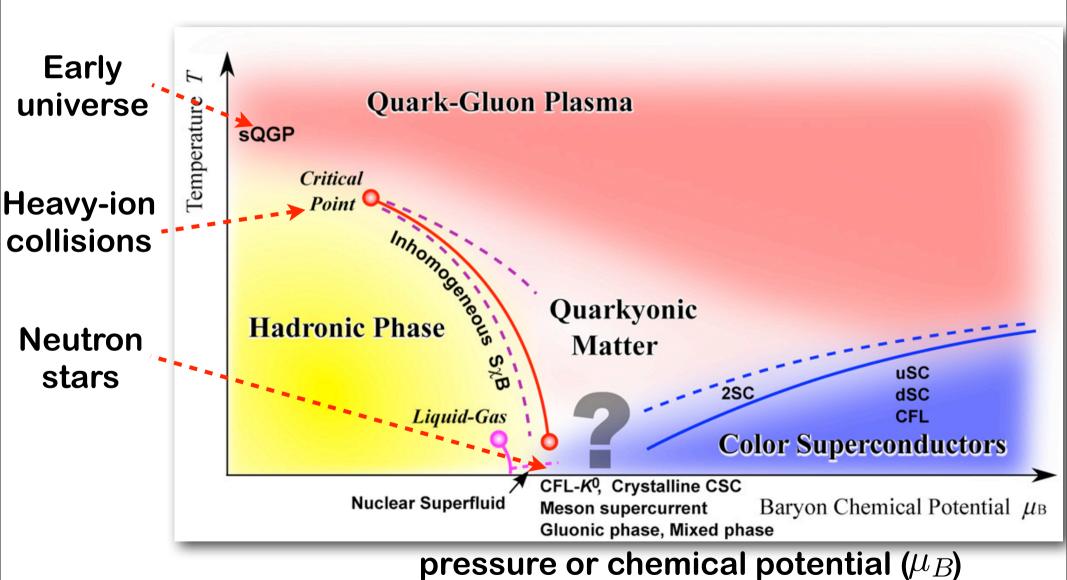
Temperature (T)


Thermal excitation of pions

Increased baryon density


pressure or chemical potential (μ_B)

QCD under extreme conditions


Compress or heat baryons

Hadrons overlap

Confinement is "lost"

Strong coupling Hamiltonian with staggered fermions

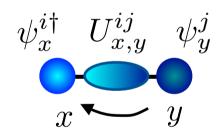
$$H = \frac{g'^2}{2} \sum_{\langle x, y \rangle} (E_{x,y})^2 + \frac{g^2}{2} \sum_{\langle x, y \rangle} \left[\left(\vec{L}_{x,y} \right)^2 + \left(\vec{R}_{x,y} \right)^2 \right] - t \sum_{\langle x, y \rangle, i, j} \left(\psi_x^{i\dagger} U_{x,y}^{ij} \psi_y^j + \text{h.c.} \right) + m \sum_{x, i} (-1)^x \psi_x^{i\dagger} \psi_x^i$$

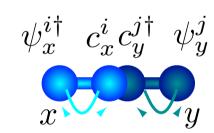
Staggered mass

Non-abelian electric field

Electric field

Matter-gauge interaction


Strong coupling Hamiltonian with staggered fermions


$$H = \frac{g'^2}{2} \sum_{\langle x, y \rangle} (E_{x,y})^2 + \frac{g^2}{2} \sum_{\langle x, y \rangle} \left[\left(\vec{L}_{x,y} \right)^2 + \left(\vec{R}_{x,y} \right)^2 \right] - t \sum_{\langle x, y \rangle, i, j} \left(\psi_x^{i\dagger} U_{x,y}^{ij} \psi_y^j + \text{h.c.} \right) + m \sum_{x, i} (-1)^x \psi_x^{i\dagger} \psi_x^i$$

Non-abelian electric field

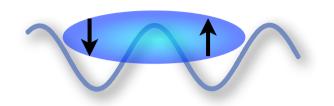
Electric field

Matter-gauge interaction

$$H = -t \sum_{\langle x, y \rangle, i, j} \left(\psi_x^{i\dagger} U_{x, y}^{ij} \psi_y^j + \text{h.c.} \right) + \dots = -t \sum_{\langle x, y \rangle} \left[\left(\sum_i \psi_x^{i\dagger} c_x^i \right) \left(\sum_j c_y^{j\dagger} \psi_y^j \right) + \text{h.c.} \right] + \dots$$

Matter - gauge interaction

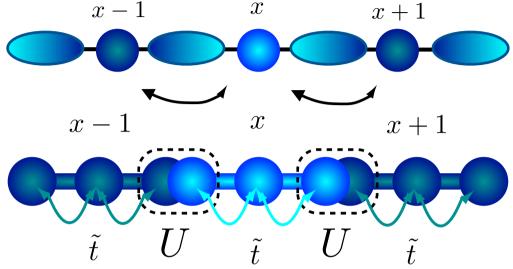
= hopping of fermions mediated by a quantum link


= correlated hopping of fermions and rishons

Staggered mass

$$H_{\text{hop}} = -\tilde{t} \sum_{i} \psi_x^{i\dagger} c_x^i + \text{h.c.}$$

(Color singlet) hopping fermion-rishon


$$H_{\text{hop}} = -\tilde{t} \sum_{i} \psi_x^{i\dagger} c_x^i + \text{h.c.}$$

(Color singlet) hopping fermion-rishon

$$H_{\rm hop} = -\tilde{t} \sum_i \psi_x^{i\dagger} c_x^i + {\rm h.c.}$$
 (Color singlet) hopping fermion-rishon

The building block is already gauge invariant (summation over internal degrees of freedom)

Action of the hopping fermion-rishon swaps the local singlet to nearest-neighbor ones

(Color-singlet interaction/constraint) number of rishon per link

$$H_U = U [N_{x,y} - n]^2 = U \left[\sum_i (c_x^{i\dagger} c_x^i + c_y^{i\dagger} c_y^i) - n \right]^2$$

Constraint: on-site SU(2N) interaction

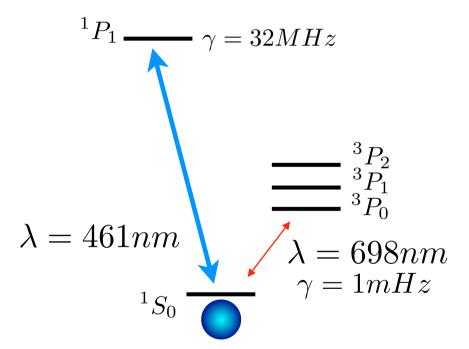
Implementation of (non-)abelian Alkaline-earth(-like) atoms quantum link models

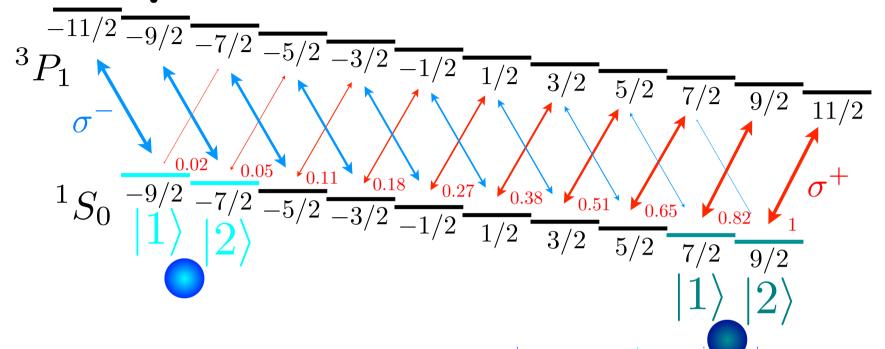
hydrogen 1 H	In	Implementation: fermionic alkaline earth atoms													helium 2 He			
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	Č	N	Ó	Ě	Ne
6.941	9.0122												10.811	12.011	14.007	15,999	18,998	20.180
sodium	magnesium												aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12												13	14	15	16	17	18
Na	Mg												ΑI	Si	Р	S	CI	Ar
22.990 potassium	24.305 calcium		scandium	titanium I	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Rb	Sr		V	Žr	Nb	Mo	_	Ru	Rh	Pd		Cd		Sn	Sb	02.70	33 I	Хe
			I				IC				Ag		ln			Te		
85.468 caesium	87.62 barium	0.00400370.0	88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]			C+.	ontiu
8 56 NO.	101 11																่อแ	UIILIL

um / Ytterbium

*Lanthanide series

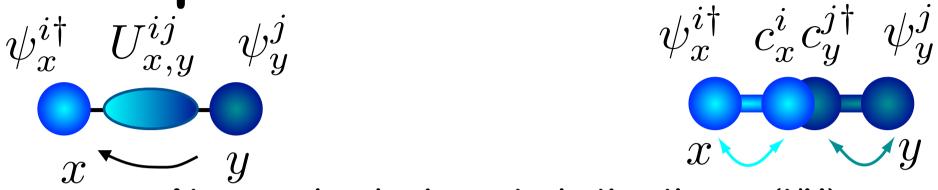
* * Actinide series

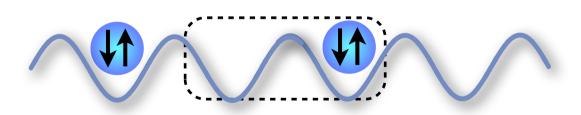

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
-1	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
ſ	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
-	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
Į	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]


i) fermionic alkaline earths have nuclear spin I>0 ii) scattering independent of the nuclear spin

$$^{87}Sr(I = 9/2)$$
 $^{173}Yb(I = 5/2)$

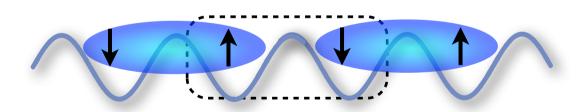
$$^{173}Yb(I=5/2$$


Ground state hyperfine Zeeman levels encode the color degrees of freedom


Different polarizations are used to trapped different internal levels

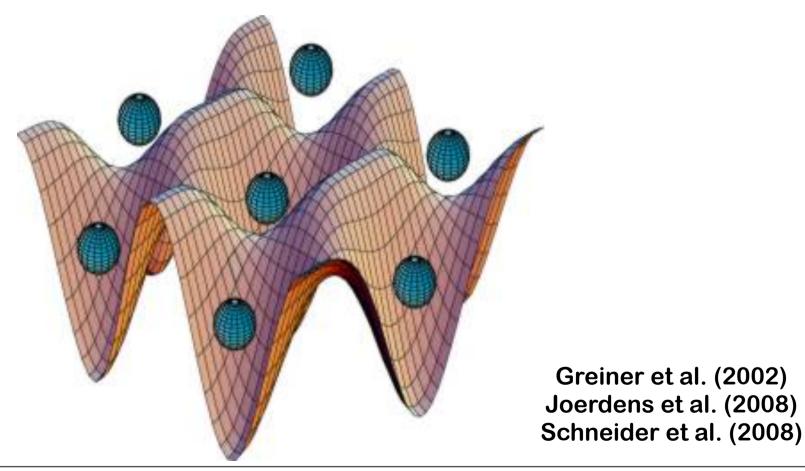
At second order in perturbation theory (t/U):

$$H_{\text{micro}} = U \left[\sum_{i} \left(c_x^{i\dagger} c_x^i + c_y^{i\dagger} c_y^i \right) - n \right]^2 - \tilde{t} \sum_{i} \left(\psi_x^{i\dagger} c_x^i + c_y^{i\dagger} \psi_y^i \right) + \text{h.c.}$$

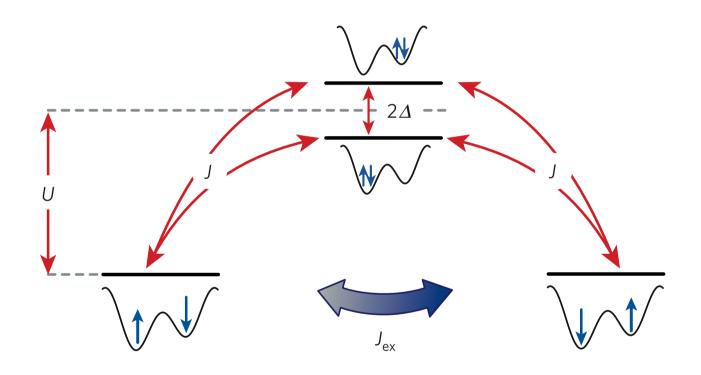


$$H_{\text{eff}} = -t \sum_{\langle x,y \rangle} \left[\left(\sum_{i} \psi_{x}^{i\dagger} c_{x}^{i} \right) \left(\sum_{j} c_{y}^{j\dagger} \psi_{y}^{j} \right) + \text{h.c.} \right] + \cdots$$

At second order in perturbation theory (t/U):

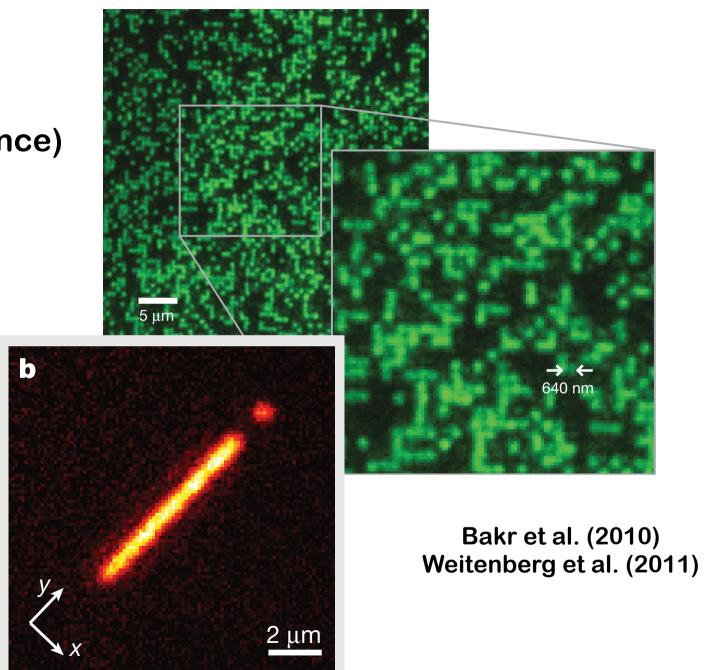

$$H_{\text{micro}} = U \left[\sum_{i} \left(c_x^{i\dagger} c_x^i + c_y^{i\dagger} c_y^i \right) - n \right]^2 - \tilde{t} \sum_{i} \left(\psi_x^{i\dagger} c_x^i + c_y^{i\dagger} \psi_y^i \right) + \text{h.c.}$$

$$H_{\text{eff}} = -t \sum_{\langle x, y \rangle} \left[\left(\sum_{i} \psi_{x}^{i\dagger} c_{x}^{i} \right) \left(\sum_{j} c_{y}^{j\dagger} \psi_{y}^{j} \right) + \text{h.c.} \right] + \cdots$$


Observability of phenomena

Preparation of many body states (Mott phase)

Observability of phenomena


Evolution (Super-exchange)

Anderlini et al. (2007) Trotzky et al. (2008)

Observability of phenomena

Detection (Single-site fluorescence)

Conclusions

Simpler atomic/molecular/solid state implementations (not in the talk: QLM with magnetic atoms/polar molecules!)?

Superconducting Qubits (D. Marcos,...), Dipoles and Rydberg (A. Glaetzle, ...)

Connection with gauge magnets and spin liquids (in principle accessible within this toolbox)

Finite-temperature confinement/deconfinement phase transition, deconfined criticality in 'feasible quantum link'?

Still very far away from QCD (even with the SU(3)): next steps?

The team

Albert Einstein Center - Bern University

D. Banerjee

M. Bögli

P. Stebler

P. Widmer

U.-J. Wiese

Complutense University Madrid

M. Müller

Technical University
Vienna

P. Rabl

IQOQI - Innsbruck University

M. Dalmonte

D. Marcos

P. Zoller