

DEPFET Technology, Test Beam Performance.

Marçà Boronat Marcel Vos Daniel Esperante Carlos Lacasta Juan Fuster

TAE - September 26, 2013

Index

- 1. DEPFET Technology.
- 2. DEPFET Framework (Belle II, ILC).
- 3. Test Beam Framework.
- 4. Results.

1

- 1. Maps
- 2. Noise & Efficiency
- 3. Charge Collection
- 4. Cluster Size
- 5. Sensor Resolution.

DEPFET Technology

DEPFET Technology, Clear.

- The charge collected in the internal gate(by the impinging particles and leakage current) should be removed periodically.
- The collected charge is extracted applying a high voltage near to the internal gate (clear contact)
- (Rolling Shutter Mode).

Belle II & ILC

- DEPFET to the Belle II detector is a previous step to ILC vertex detector concept.
- DEPFET Contribution to Belle II:
 - At 14 mm of radio, 8 modules with 1536x250 pixels of 50x50 μ m^{2.}
 - At 22 mm of radio, 12 modules with 1536x250 pixels of 75x50 μ m^{2.}

DEPFET Test Beam, Setup

- Places: CERN 120 GeV π and DESY 4 GeV e⁻.
- AIDA Infrastructure: Telescope with six Mimosa26 Pixel Module (pitch 18.4x18.4 μ m2) and pointing resolution \approx 2 μ m.

Results From Test Beam of June at CERN:

- Module: H4.1.15 DCDBv2, PXD6 Matrix N05, standard Belle II design, drift implantation, gate length 5 μ m and thick oxide, **ASICs were operated at 100MHz**.
- Pixel size: 50x75 μ m on 50 μ m thick.

DEPFET Test Beam, Maps

6

DEPFET Test Beam, Noise & Efficiency

DEPFET Test Beam, Charge Collection

- MPV of Cluster charge distribution \approx 21 ADU.
- MPV of Charge distribution of the Seed Pixel \approx 16 ADU.
- Signal/Noise Ratio \approx 40 (on 50 μ m thick).
- Signal expressed in pA per micron of active Silicon, compared with the prediction for the energy deposition in thin Silicon Layers of H.Bichel.

ZSCut Parameter.

Total Cluster Size

ZS cut: Minimum required charge to consider one neighbor pixel as a • part of the cluster, in units of noise of the pixel.

DEPFET Test Beam, Cluster Size (inpixel Map)

- ZS cut: Minimum required charge to consider one neighbor pixel as a part of the cluster, in units of noise of the pixel.
- Almost all clusters have size one, they are piled up on center of the. The bigger clusters are located on the pixel edges.
- ZS cut is an important parameter in the optimization of the sensor resolution.

DEPFET Test Beam, Sensor Resolution

- Resolution limit: 8.5

 (16.1) μ m to the side with 50 (75) μ m.
 (Pixel size: 50x75 μ m on 50 μ m thick)
- Using DEPFET sensor on 450 μ m tick and 20x20 μ m of pitch: Resolution limit \approx 1 μ m.

Summary

TESTBEAM:

- DEPFET is an active pixel detector.
- Last two years, prototypes of **50** μ **m thick** were tested. A full characterization of the prototypes **at 100 Mhz** was made.
- We found an DUT efficiency of 99.7%, a Signal/Noise Ratio around 40 with a signal distribution agree with the Bichsel Model, and a limit resolution of 8.5 μm (CoG Method).
- Now, the collaboration are focused in the sensor characterization at 320 MHz, which allow a full frame readout time of 20 μ s.

Thanks for you attention.