Introduction to silicon devices in HEP experiments & laboratory tests

S. Martí-García IFIC-València TAE 2013, Benasque

• Introduction

• Silicon Devices in HEP experiments

- Semiconductor basics:
 - Band theory, p-n junction, electrical properties, signal formation...
- Position sensitive sensors
 - Pixel, microstrip, 3D
 - Performance and operation
- Radiation damage
- Other sensor types
- Laboratory tests: signal handling simulation

<u>Introduction</u>

- Silicon sensors are used in a wide variety of applications
- Nuclear physics
 - Energy measurement of charged particles & Gamma spectroscopy
 - Range of MeV
- Particle physics
 - As tracking devices: reconstruct trajectory of charged particles
 - Precise determination of particle properties
 - Vertex reconstruction
 - Momentum range of GeV
 - Impact parameters resolution: order of microns
- Satellite Experiments & Dark Matter
 - Tracking sensors
- Industrial applications
 - Security, medicine, biology

<u>Introduction</u>

- Silicon sensors are used in a wide variety of applications
- Nuclear physics
 - Energy measurement of charged particles & Gamma spectroscopy
 - Range of MeV
- Particle physics
 - As tracking devices: reconstruct trajectory of charged particles
 - Precise determination of particle properties
 - Vertex reconstruction
 - Momentum range of GeV
 - Impact parameters resolution: order of microns
- Satellite Experiments
 - Tracking sensors
- Industrial applications
 - Security, medicine, biology

Pros & Cons of semiconductors

- Semiconductor detectors are quite dense
 - High energy loss in a small particle path
 - Miniaturisation & small scattering effects \rightarrow good spatial resolution (µm)
- Ionisation energy is relatively low
 - 3.6 eV per e-hole pair:
 - Gas (>20 eV per e-ion pair) & Scintillators (>400 eV per photon)
 - Sizeable signals are produced in thin sensor layers. Typical size 300 μm
- Electronics industry: silicon technology is widely available
 - Large experience in silicon microchip manufactures → feasibility of complex designs
 - Same material as the readout electronics → integration of large number of channels
- Suitable for high radiation environments
 - For example: LHC & satellite experiments
- High cost
 - Power consumption \rightarrow cooling system
 - Need of signal amplification (some exceptions)
 - Special laboratories \rightarrow clean room

Semiconductor basics

Band structure of the electrons energy levels in the outermost layers

- Insulators, semiconductors & conductors
 - Classification depends on the energy gap between the valence and conduction bands

<u>Important aspects for sensor design</u>

- Ideally sensors must have a large signal-to-noise ratio (SNR)
 - Large signals & Low noise
- In a semiconductor sensor demanding a large SNR leads to two contradictory requisites
 - Large signals: low ionisation energy (e-h pair formation) \rightarrow small band gap
 - Low noise: few intrinsic charge carriers (e-h excitation) \rightarrow large band gap
- Ideally the band gap energy should be around Eg ~ 5 eV
 - Small enough to convert particles ionizing energy loss into a sizeable signal
 - Large enough to avoid (at room T) many e-h pairs spontaneous formation and keep conduction band virtually empty → low noise

• Diamond has these properties

- Artificial diamonds available in industry (CVD diamonds)
- Unfortunately, diamonds sensors are too expensive for a large area detector (even artificial diamonds)
- Practical alternative: use Silicon
 - Eg ~1.12 eV (T dependent)
 - Low excitation (e-h pair) energy 3.6 eV
 - Fast signal collection (few ns)

<u>Semiconductor basics</u>

Covalent bonds of electrons

- Group IV: C, Si & Ge
- 4 covalent bonds
- 3D structure
- Compounds: e.g. GaAs
- Simplified 2D model

T = 0K

- Valence electron
- Conduction electron

e.	P.	
		~
	\sim	
•		-0-

taula periòdica dels elements

- At T=0K all electrons are bound
 - No conductivity
- At T>0K thermal excitations break some bounds
 - Electrons free to move → electrical conductivity
 - Vacancies can be occupied by other electrons → hole conduction as a +ve charged particle

<u>Intrinsic and doped semiconductors</u>

- At T>0K (e.g. room temperature) electrons in conduction band recombine with holes
 - Equilibrium is reached between excitation and recombination
 - Charge carrier concentration \rightarrow intrinsic carrier concentration

$$n_i = n_n = n_p \propto T^{3/2} \exp\left(-\frac{E_g}{2k_BT}\right)$$
 In Si, at room temperature $n_i \sim 1.5 \cdot 10^{10} \text{ cm}^{-3}$

- Doping of silicon with group V elements (donor; P, As, Sb) adds a 5th electron weakly bound → electron ready for conduction → n-type
- Doping of silicon with group III elements (acceptor; B, AI, Ga, In) → a covalent bond is open → hole formed → p-type

<u>Carriers mobility</u>

- The motion of free carriers leads to a current that we may detect
 - Therefore the e-h mobilities are important parameters that influence the device design and manufacture
- Two kinds of carrier transport mechanisms
 - Drift: caused by an electric field (internal or external)
 - Diffusion: due to a carrier density gradient
- Due to thermal energy, carriers are permanently random moving
 - Electrons thermal velocity at room temperature $\sim 10^7$ cm/s = 100 μ m/ns
 - Atoms in the crystal also vibrate more at high temperature
 - Electrons scatter with lattice atoms (loose energy & change direction) \rightarrow random movement $\mathcal{E} = 0$ $\mathcal{E} \neq 0$

In Si, at room temperature average time between collisions $2.6 \cdot 10^{-13}$ s

Carriers move like a gas or wave packet with an effective mass (m*)

$$\frac{\hbar}{2\,m^*}\nabla^2\psi + V\,\psi = E\,\psi$$

<u>Carriers mobility</u>

Drift of charge carriers

 $\vec{v}_n = -\mu_n \cdot \vec{E}$

- An electric field (E) accelerates the carriers
- The carriers collide with the atoms and lose their energy
- A saturation drift velocity (v) is reached \rightarrow mobility (µ)

au is the average time between collisions

 $\mu_n = \frac{e \tau_n}{m_n} \quad [cm^2/(V \cdot s)] \quad \mu_p = \frac{e \tau_p}{m_p} \qquad \mu_p$

 $\vec{v}_{n} = \mu_{n} \cdot \vec{E}$

$$\mu_n > \mu_p \rightarrow \text{electrons move faste}$$

• This is an effective model for carriers drift

- Effective mass applicable for electrons and holes $(m_n \& m_p)$

- Conductivity & Resistivity:
 - To avoid noise \rightarrow high ρ is preferred

$$\sigma = e(\mu_n n_n + \mu_p n_p) \quad [(\Omega \cdot m)^{-1}]$$

$$\rho = \frac{1}{\sigma} = \frac{1}{e(\mu_n n_n + \mu_p n_p)}$$

The p-n junction

- A p-n junction is formed when two opposite doping type semiconductors are in contact
 - The excess of electrons in the n-type diffuses to the p-type and combine with the holes (majority) and vice-versa
 - A region free of charge carriers appears \rightarrow depletion zone
 - The dopant atoms become permanently ionized \rightarrow a net space charge region emerges \rightarrow junction electric field (& built in potential V_{bi})

Carriers diffusion \rightarrow

Depletion zone \rightarrow

The p-n junction

- A p-n junction is formed when two opposite doping type semiconductors are in contact
 - The excess of electrons in the n-type diffuses to the p-type and combine with the holes (majority) and vice-versa
 - A region free of charge carriers appears \rightarrow depletion zone
 - The dopant atoms become permanently ionized \rightarrow a net space charge region emerges \rightarrow junction electric field (& built in potential V_{bi})

Still, thermal excitation creates e-h pairs in everywhere and of course in the depleted zone. The electric field there splits electrons and holes in opposite directions thus producing a LEAKAGE CURRENT

<u>Reverse biased p-n junction</u>

- Apply an external (reverse bias) voltage
 - Electrons and holes may get enough energy to cross the barrier
 - The depletion zone grows (size depends on dopant concentrations)
 - The potential barrier becomes larger (by eV)
 - Diffusion across the barrier becomes more difficult (higher barrier)
 - Still there is a leakage current across the junction

Width of the depletion zone:

$$W(V) \approx \sqrt{\frac{2 \varepsilon_{Si}}{e |N_{eff}|} (V_{bi} + V)} \qquad N_{eff} = N_d - N_a$$

Capacitance:

$$C(V) = \frac{dQ}{dV} \approx A \sqrt{\frac{e \varepsilon_{Si} |N_{eff}|}{2V}} \qquad A \to \text{Sensor area}$$

Leakage current (due to e-h pair generation):

$$J(V) = \frac{e n_i W(V)}{2\tau_g} \propto \sqrt{V}$$
$$J(V,T) = \frac{e n_i W(V)}{2\tau_g(T)} \propto \frac{n_i}{\tau_g}(T) \propto T^2 \exp\left(-\frac{E_g}{2k_B T}\right)$$

Basic silicon sensor scheme

- Usually, sensors are operated via a reverse biased p-n junction
 - Very different dopant concentrations in p and n sides
 - Sensor bulk of a single type (either p- or n-type)
 - Depleted zone free of charge carriers
 - Except thermally generated e-h pairs \rightarrow leakage current
 - Ionizing energy loss from incident particles releases e-h pairs (3.6 eV per e-h)
 - Minimum ionizing particles average energy loss in silicon: $(dE/dx)_{si} = 3.88 \text{ MeV/cm}$

n

+

Х

- Average ~108 e-h pairs per micro-meter
- Average ~32,000 e-h pairs in 300 µm thick silicon sensors
- Average deposited charge ~5 fC
- The electric field in depleted zone drifts away e-h pairs
 - Separation of e and $h \rightarrow$ current inducted

hole

- The movement of the charge carriers (e & h) leads to a current which can be detected → signal
 - Schockley-Ramo's Theorem (1938) relates the charge seen by the electrodes induced by a moving particle
- Signal like for **p-on-n** sensors
 - p-type connected to readout electronics
 - n-type bulk
 - Fully depleted sensor $(V_{bias} > V_{fd})$

- The movement of the charge carriers (e & h) leads to a current which can be detected → signal
 - Schockley-Ramo's Theorem (1938) relates the charge seen by the electrodes induced by a moving particle
- Signal like for **p-on-n** sensors
 - p-type connected to readout electronics
 - n-type bulk
 - Partially depleted sensor $(V_{bias} < V_{fd})$

- The movement of the charge carriers (e & h) leads to a current which can be detected → signal
 - Schockley-Ramo's Theorem (1938) relates the charge seen by the electrodes induced by a moving particle
- Signal like for **n-on-p** sensors
 - n-type connected to readout electronics
 - p-type bulk
 - Fully depleted sensor $(V_{bias} > V_{fd})$

Advantage: electrons have factor 3 larger mobility \rightarrow faster signal & smaller collection time Still the holes contribute to the signal (they keep moving \rightarrow current)

Silicon Sensors Lecture @ TAE 2013

- The movement of the charge carriers (e & h) leads to a current which can be detected → signal
 - Schockley-Ramo's Theorem (1938) relates the charge seen by the electrodes induced by a moving particle
- Signal like for **p-on-p** sensors
 - p-type connected to readout electronics
 - p-type bulk + n-type layer in the backplane \rightarrow p-n junction
 - Partially depleted sensor $(V_{bias} < V_{fd})$

In spite of the E=0 region near the readout channels signal is still visible because the charge carriers move in the depleted region \rightarrow the current produces signal although spatial resolution degrades

Position sensitive: segmentation

- Silicon sensors can be used as position sensitive detectors via SEGMENTATION
 - Add many readout channels in the same sensor
 - Planar technology (most common)
 - 3D technology (recent development)

Position sensitive: segmentation

- Silicon sensors can be used as position sensitive detectors via SEGMENTATION
 - Add many readout channels in the same sensor
 - Planar technology (most common)
 - 3D technology (recent development)

Silicon wafer with sensors

25/September/2013

- The movement of the charge carriers (e & h) leads to a current which can be detected → signal
 - Schockley-Ramo's Theorem (1938) relates the charge seen by the electrodes induced by a moving particle
- Signal like for **p-on-p** sensors
 - p-type connected to readout electronics
 - p-type bulk + n-type layer in the backplane \rightarrow p-n junction
 - Fully depleted sensor ($V_{bias} > V_{fd}$)

The electric field is more intense at the p-n junction (backplane) \rightarrow As carriers velocity is: v = $\mu E \rightarrow$ carriers slow down as they approach the readout contact

Position sensitive: segmentation

- The measurement of the position depends on the fired channel
 - Many readout channels in the same sensor: channel ↔ position
 - Physics processes: distance between channels (pitch), signal-to-noise ratio, readout mode (analogue or binary), channel coupling, ...

<u>Data acquisition in HEP experiments</u>

• Goal is to record the data registered by sensors when beams collide

<u>Data acquisition in HEP experiments</u>

- Sensors react to the passage of particles and produce signals
 - Usually as electric pulses
 - Digitization: convert those pulse into digits
- Trigger
 - Whenever an interesting event happens
 - Whatever "interesting" means
- Record the data
 - In digital format
 - In disk or tape
- Event reconstruction
 - Tracker hits \rightarrow tracks
 - Calorimetry → energy deposition
 - Bear in mind the calibration, geometry, etc.
- Event analysis & selection
 - According to the reconstructed objects
- Physics results
 - Eureka !

LHC 40 MHz clock

- LHC works with a 40 MHz clock
 - It does not mean collisions happen at 40 MHz all day long

- Electronics should be fast and be ready to record each 25 ns slot independently.
 - Otherwise signal pile-up may occur

LHC 40 MHz clock

- LHC works with a 40 MHz clock
 - It does not mean collisions happen at 40 MHz all day long

- Electronics should be fast and be ready to record each 25 ns slot independently.
 - Otherwise signal pile-up may occur

Signal processing

- The sensors are operated continuously although data is read out only when acquisition is triggered
 - Output depends on readout mode

Analogue mode \rightarrow (arbitrary units)

Possibility to perform center of gravity calculations

Storing all data is not practical \rightarrow zero suppression

25/September/2013

Silicon Sensors Lecture @ TAE 2013

Signal processing

The sensors are operated continuously although data is read out only when acquisition is triggered

0 0 Binary mode \rightarrow 1 0 0

No center of gravity 0 calculations

threshold

Very compact data format

0

0

 $\mathbf{0}$

0

<u>Signal processing for track fitting</u>

- Hit ↔ channel with signal
 - Detector specific
 - Channel ID & pulse height
- Cluster \rightarrow group of channels
 - From 1 channel to many
 - 3D information:
 - Global or local coordinates
 - Position: (x, y, z)
 - Error: (δx, δy, δz) in a covariance matrix form
- Cluster position may depend:
 - Hit data: binary or analogue
 - Center of gravity
 - Lorentz angle corrections
 - Operation embedded in a B field
 - Charge carriers drift/diffusion
 - Track incident angle
 - MCS corrections

Many channels → Position and error depend on clustering algorithm, hit info (analog or binary), strategy and conditions Example 1: use just binary info

Drift of Original Children of

<u>Signal processing for track fitting</u>

- Hit ↔ channel with signal
 - Detector specific
 - Channel ID & pulse height
- Cluster \rightarrow group of channels
 - From 1 channel to many
 - 3D information:
 - Global or local coordinates
 - Position: (x, y, z)
 - Error: (δx, δy, δz) in a covariance matrix form
- Cluster position may depend:
 - Hit data: binary or analogue
 - Center of gravity
 - Lorentz angle corrections
 - Operation embedded in a B field
 - Charge carriers drift/diffusion
 - Track incident angle
 - MCS corrections

- Cluster charge (signal)
 - Computed from hits
 - Correct for:
 - gain & noise
 - Track path within tracking volume
- Allow to compute dE/dx
 - Analogue (pulse height) data

<u>Noise</u>

- Noise degrades the tracking capabilities of silicon sensors
 - Genuine signals may be swamped by noise
 - Fake hits could spoil the track fitting
- Most important contributions to silicon sensors noise are:
 - Leakage current
 - Detector capacity
 - Detector parallel resistor
 - Detector series resistor

$$ENC = \sqrt{ENC_l^2 + ENC_c^2 + ENC_{Rp}^2 + ENC_{Rs}^2}$$

Silicon Sensors Lecture @ TAE 2013

<u>Noise</u>

- Noise due to leakage current
 - Thermally generated e-h in depleted zone drift away \rightarrow current
 - In a similar manner to the e-h pairs released by ionizing particles
 - Keep leakage current low
 - Radiation damage \rightarrow increases the leakage current
- Noise due to detector capacitance
 - Usually the dominant source of noise
 - Keep capacity low
 - Use short strips or pixels (very low noise)
- Noise due to detector parallel resistor
 - Dominated by the bias resistors
 - Large value of the bias resistors are preferred
- Noise due to series resistor
 - Related with the coupling of the channel with the readout electronics
 - Low resistance in the aluminium layers is preferred \rightarrow thick layers
 - Short connections \rightarrow readout chips near the sensors
- Very close relation with amplifier's peaking time
 - Sampling time and peaking time dictated by the collision rate

<u>Noise</u>

- Noise due to leakage current
 - Thermally generated e-h in depleted zone drift away \rightarrow current
 - In a similar manner to the e-h pairs released by ionizing particles
 - Keep leakage current low
 - Radiation damage \rightarrow increases the leakage current
- Noise due to detector capacitance
 - Usually the dominant source of noise
 - Keep capacity low
 - Use short strips or pixels (very low noise)
- Noise due to detector parallel resistor
 - Dominated by the bias resistors
 - Large value of the bias resistors are preferred
- Noise due to series resistor
 - Related with the coupling of the channel with the readout electronics
 - Low resistance in the aluminium layers is preferred \rightarrow thick layers
 - Short connections \rightarrow readout chips near the sensors
- Very close relation with amplifier's peaking time
 - Sampling time and peaking time dictated by the collision rate

- Silicon atoms are structured in a crystal
- Particles crossing the sensors interact with the electron cloud an produce signal by ionizing the atoms (e-h pairs...)
- Those same particles (and neutral ones) can interact with the atoms
 - May produce displacement of the atoms of the lattice \rightarrow crystal defects
 - Electrical properties depends on the crystal purity and defects can spoil them
- The rate at which crystal defects are introduced depends on:
 - Incident particle flow
 - Incident particle energy
 - NIEL
 - Non Ionizing Energy Loss
 - Which is used to expel Si atoms from their position in lattice & create defects
- Microscopic damage
 - Changes in the lattice
- Macroscopic effects
 - Sensor properties

- Point defects:
 - Atoms leaving their position in the lattice leave a Vacancy (V)
 - 25 eV ! Energy necessary to remove a Si atom from its lattice location
 - They use to occupy an inter-lattice space (interstitial, I)
 - Frenkel defect: a vacancy interstitial pair (quite stable)
 - Otherwise: Annealing process
 - defects are mobile at room T
- Cluster defects:
 - The primary knock-on atom may displace other atoms in the lattice
 - Clusters may involve hundreds of atoms
 - Produce amorphous silicon

Schematic distribution of vacancies created By a 50 KeV Si atom in silicon

- One can distinguish between damage in the bulk and in the surface
 - Bulk damage: dislocations caused by massive particles
 - defects create intermediate energy levels in the band gap
 - Doping concentration, leakage current and charge trapping
 - Surface damage: charge layer generated in the oxide caused by photons and charged particles
 - May affect the isolation between strips/channels \rightarrow micro-discharges

Damage hardness factor for different particles

Radiation damage: bulk damage

- Change of the effective doping concentration
 - New energy levels (defect) act as dopants (p-type)
 - Change in the depletion voltage
 - Eventual change of bulk type: from n-type to a p-type
 - p-n junction may migrate

- Increase of the leakage current
 - Due to deep energy levels
 - Impact on sensors noise
 - Thermal runaway
 - Power dissipation & cooling system

25/September/2013

- Charge trapping: carriers may be caught during their drift
 - Later they will be released again
 - Although the net effect is: stop contributing to the current and therefore to the signal
- Trapping is due to deep levels
 - in the middle of the band gap
 - Trapping probability depends on carriers velocity
 - Mobility
 - Less trapping for electrons

[B. Rollings in 100 m hurdles final. Moscow 2013]

25/September/2013

Radiation damage: annealing

- Annealing: defects are mobile due to thermal excitation
 - Interstitial vacancy may combine (lattice restoration \rightarrow beneficial)
 - Form complex defects: di-vacancy (quite stable)
 - Temperature & time dependent
- 3 components of structural damage
- - - Oxigenation of substrate (improves radiation hardness)
 - **Device engineering**
 - Substrate type (p-type does not inverts)
 - 3D (very low depletion, collection time, drift distance...)
 - New materials
 - MCZ, SiC, Monolithic devices, diamond

<u>Other semiconductor sensor types</u>

- Charge Coupled Devices (CCD)
 - Slow device but with resolution equivalent to pixel sensors. Excellent SNR
- Silicon drift detectors
 - 2D information: segmentation and drift time
- Monolithic active pixels (MAPS)
 - All in one concept: detector+connection+readout
 - Great integration, low power consumption Active edge
- 3D detectors
 - Non planar, sideways depletion
 - Very low depletion voltages and very fast
- Depleted Field Effect Transistor (DEPFET)
 - Low capacitance, low noise & low power consumption
 - Combined function of sensor and amplifier
- Avalanche photodiodes (APD)
 - Operated in breakdown regime \rightarrow detect single photon
 - Used in calorimetry & Cerenkov
- Silicon Photo-multipliers (SiPMs)
 - Matrices of APD (100 or 1000 per mm²)

Al contact

A. Nepomuk Otte

K Voloshoin

ယ်

(2005)

particle

300 µm

h of e

PLANAR

signal

~ 500 µm

semitransparent metal electrode

3D

50 µm

50 µm

<u>Summary</u>

- Silicon sensors operate thanks to:
 - Incident particle creates electron-hole pair by ionization
 - Electrons and holes (charge carriers) move \rightarrow current to be detected
 - p-n junction
- Bibliography

