

Top and ElectroWeak physics Part II: experimental results

Marcel Vos (IFIC, CSIC/UV, Valencia, Spain)

Taller de Altas Energías

Septiembre 2013,

Centro de Ciencias Pedro Pascual,

Benasque

TAE2013

marcel.vos@ific.uv.es

Background and scope

I'll assume you're familiar with the basics. You'll need some background on:

the Standard Model, the Large Hadron Collider, the ATLAS and CMS experiments (please, ask whenever I go too fast)

The scope of this lecture is limited to: The physics of top quarks and weak gauge bosons

(roughly everything to come out of the top and SM-electroweak groups in CMS and ATLAS)

Intersparsed with intermezzos on important experimental techniques Discussing lepton collider prospects along with LHC status Bernreuther on LHC top quark physics (before the start of the LHC) http://arxiv.org/abs/arXiv:0805.1333

An experimentalist's review of the first two years at the LHC: http://arxiv.org/abs/arXiv:0805.1333

Outline

Motivation (that should mostly be covered in Juan Antonio's talk) Top quark reconstruction (with a bias towards new techniques) Some key measurements with top quarks:

- Top quark pair production cross-section
- Top quark charge asymmetry
- Top quark couplings to electro-weak gauge bosons
- Top quark mass
- Top quark decay: W helicity

Searches involving top quarks

- Top and Higgs
- Top and new physics

Electroweak physics

- W/Z + jets production
- Gauge boson pair production

Not a complete review. No mention of top quark polarization, single top, and many other interesting subjects.

Searches vs. SM measurements

A large fraction of ATLAS and CMS papers report the result of **searches**:

Define a signal region, predict the background, count events

Typical outcome: limit on a (more or less plausible) benchmark scenario for the physics that might lie beyond the Standard Model (BSM physics)

Leave no stone unturned, but expect few searches are successful...

(discussed extensively in other lectures)

Derive bounds on excited quarks from characteristics of di-jet production, or on SUSY

Searches vs. SM measurements

A different approach to study the same data:

SM measurements

No prejudice on what new physics should be like Assume the Standard Model describes kinematics adequately Produce numbers that can be compared to predictions (*i.e. apply corrections for acceptance, detector response*) Expose the result to the entire community to interpret the result

Unfolded di-jet mass spectrum and ratio of three-jet to two-jet events

The top quark

The heaviest particle in the Standard Model

We don't know why the SM fermions have the masses they have. The top quark has a mass of ~173 GeV. What does that number come from? In the SM it's the result of the Yukawa coupling of the top quark to the Higgs boson. But what does the number come from? We have been worrying about this for 45 years and we haven't made any progress!

Steve Weinberg, public lecture UTA, 24/10/2012

The top quark

A single top quark is as heavy as a Gold atom. Gold atoms are composite (quite so, indeed: 79 protons, 118 neutrons) and of finite size (so large we can "see" them).

The top quark: structure

What do we really know about the internal structure of the top quark?

observable Compositeness scale reached [TeV]

L (eeee) O(10) (LEP)

L (eeqq) O(10) (LEP)

L (qqqq) 2.9 (D0) 3.4 (ATLAS) 5.6 (CMS)

Searches for contact interaction or exicted states of quarks and leptons yield limits on compositeness (from PDG2012)

 $e^* \rightarrow e \gamma$ 1 (CMS)

 $q^* \rightarrow q g$ 2.5 TeV (CMS), 1.3 TeV (ATLAS 2010)

TAE2013

9

Tops, gauge bosons and loops

The top quark loves loops and loops love the top quark. Our favourite Higgs decay wouldn't work without heavy objects, nor would the dominant production mode.

Top quark production at hadron colliders

Collider (energy)	process	approx σ	lumi (deliv/on tape)	# of ev
Tevatron pp (run II 1.96 TeV)	ŧŧ	~7 pb	12/10 fb ⁻¹	~70 K
LHC pp (7 TeV)	tŦ	~165 pb	5.7/5 fb ⁻¹	~800 K
LHC pp (8 TeV)	tt	~235 pb	23/22 fb ⁻¹	~5 M

tt: strong interaction

Electroweak pair production is present, but not accessible as it's rate is several orders of magnitude below QCD pair production

Relation between gluon gluon-initiated and quark anti-quark initiated processes is inverted between LHC and Tevatron

Collider	qq	gg
Tevatron $p\overline{p}$ (1.96 TeV)	~85%	~15%
LHC pp (7 TeV)	~20%	~80%

5 million top quark pairs produced at the LHC

Intermezzo: sea quark, valence quark, gluon

Parton density function: probability to find a quark or gluon with a fraction x of the proton momentum Higher center-of-mass energy allows to take advantage of relatively low-x partons. Parton luminosity increases very strongly from Tevatron to LHC.

Intermezzo: ½ LHC → LHC

That begs the question: what can we expect with 14 TeV (or 13) running Another big leap!

Top quark production at hadron colliders

single t: weak interaction

Collider	s-channel σ _{tb}	t-channel σ _{tqb}	tW-channel σ _{tw}
Tevatron pp (1.96 TeV)	1.05 pb	2.08 pb	0.22 pb
LHC pp (7 TeV)	4.63 pb	64.6 pb	15.7 pb
LHC pp (8 TeV)	5.55 pb	87.1 pb	22.2 pb

1 million top quarks from single-top production

Top decay

The top quark decays to quickly to hadronize

(no top jets in the true sense of the word, but wait and see)

 $t \rightarrow Wb$ and little else

(Juan Antonio told you all about this)

Access to top polarization, spin correlations

Top decay

Top Pair Decay Channels

5% di-lepton 20% e,µ + jets 44% six jets

Top quark pairs: final states and background

Bottom line: charged leptons are useful at a hadron collider

Intermezzo experimental tools: b-tagging

B-hadrons are relatively long-lived Vertices are displaced by $\gamma c\tau$, where $c\tau$ ~450 μm

Intermezzo experimental tools: p_T **balance**

Construct four vector sum of all reconstructed objects p_z is not balanced (qq or gg initial state is not at rest in the detector) p_{τ} imbalance can be identified with the p_{τ} of an object escaping detection There must be only one such ghost particles!

A photon recoiling against a ghost particle (dark matter questions after the lecture)

Top quark pairs: reconstruction

A puzzle with 6 pieces: combine two b-jets, a charged lepton, a neutrino and two "light jets" into two top candidates using the following information:

Two non b-jets must yield W mass Top and anti-top candidate must have equal mass

Main ambiguities; swapped b-jets, gluon jet mistaken for W-daughter

(Can you think of a method to distinguish *b*-jets from \overline{b} -jets. Will it work at the LHC?)

Top quark pairs: reconstruction

B-tagging distinguishes **b-jets** from W-decay jets and gluon radiation

The **neutrino:** $\mathbf{p}_{T} = -\mathbf{p}_{T}^{\text{miss}}$, \mathbf{p}_{z} from W-mass constraint, resolve 2-fold ambiguity in some ad hoc way

Pick the two with highest **p**_T among the **remaining jets**

tt -> Wb Wb -> ℓ∨b qqb

????

Now apply the strategy to this (real) event.

What's going on here?

What information is no longer resolved?

What bit of information didn't we use?

Answers in an hour...

Some preparatory work...

Some preparatory work...

tt + no jets

tt → ℓℓbbvv with veto on extra jets Gap fraction

- fraction of events *without* an additional jet above threshold
 Result
- reasonable description of data, except for MC@NLO in central region; helps reducing allowed radiation variation

The gap fraction measurement enables other measurements, as it yields an improved understanding of the limitations of NLO MC (MC@NLO, POWHEG) and allows to sharpen the ISR/FSR prescriptions (which then benefit the x-sec and mass measurement)

We need some way to make the corrected results public, so that they can be compared to generators and tunes efficiently

Useful things to look up: HEPDATA, RIVET

http://arxiv.org/pdf/1003.0694.pdf http://hepdata.cedar.ac.uk/view/ins1094568

Tt + extra jets

Allows to check modeling at high #jets at top quark scale

- important for top, Higgs, BSM
- unfold spectrum in visible experimental phase space

Cross-section

Cross-section

Theory intermezzo: calculability

Theory milestone: full NNLO and NNLL result for top quark pair production at hadron colliders

K-factor (NLO \rightarrow NNLO) ~ 10% Scale stability ~ 5 %

Collider	$\sigma_{ m tot} ~[{ m pb}]$	scales [pb]	pdf [pb]
Tevatron	7.009	+0.259(3.7%) -0.374(5.3%)	+0.169(2.4%) -0.121(1.7%)
LHC 7 TeV	167.0	+6.7(4.0%) -10.7(6.4\%)	+4.6(2.8%) -4.7(2.8\%)
LHC 8 TeV	239.1	+9.2(3.9%) -14.8(6.2%)	$+6.1(2.5\%) \\ -6.2(2.6\%)$
LHC 14 TeV	933.0	$+31.8(3.4\%) \\ -51.0(5.5\%)$	$+16.1(1.7\%) \\ -17.6(1.9\%)$

Luminosity & beam energy

The luminosity at the LHC is measured to approximately 3%

Determined from:

- number of particles in the bunches (beam current)
- revolution frequency (precisely known)
- beam size (Vandermeer scan)

The beam energy must be accurately known: a few % error translates into a cross-section that is similar to the current uncertainty on the tt production rate

Differential cross-section

Test of pQCD in do/dx *l*+jets, dilepton @ 7 and 8 TeV

- check dependence on QCD scales, ME-PS matching, generators
- enhance sensitivity to new physics

Differential in pT, η (and m) for $\ell,\,\ell\ell,\,b,\,b\ell,\,t,\,tt$

Differential cross-section

Provide results that can be compared to predictions "directly" Differential in pT, η (and m) for ℓ , $\ell\ell$, b, b ℓ , t, tt

Good description in general aNNLO describes softer pT(top)

Intermezzo: pseudo-top & fiducial regions

The measurement of the cross-section is prone to modeling uncertainties

Example:

- result depends on lepton $p_{_{T}}$ spectrum (acceptance correction)
- this uncertainty is estimated by comparing different generators

A more precise comparison of data and theory is possible by "getting closer to the measurement":

- define the cross-section for a fiducial region
- in our example, the tt production with $p_{T}(l) > 25 \text{ GeV}$
- requires theory work: top decay must be included

Tevatron charge asymmetry

Tevatron legacy: evidence for larger charge asymmetry than predicted by Standard Model, especially at large tt invariant mass

Papers with "evidence" in the title, followed by something not predicted by the SM are rare

http://arxiv.org/abs/arXiv:0910.5472

Figure by German Rodrigo See also: http://ific.uv.es/~rodrigo/talks/ 2012_03_rodrigo_top_Moriond.pdf

Tevatron charge asymmetry

Tevatron legacy: evidence for larger charge asymmetry than predicted by Standard Model, especially at large tt invariant mass

Papers with "evidence" in the title, followed by something not predicted by the SM are rare

http://arxiv.org/abs/arXiv:0910.5472

Figure by German Rodrigo See also: http://ific.uv.es/~rodrigo/talks/ 2012_03_rodrigo_top_Moriond.pdf

Charge asymmetry

Unfolding \rightarrow correction for acceptance & migrations due to limited resolution Reconstruced distr. x acceptance correction x migration matrix⁻¹ = corrected result

TAE2013

37

marcel.vos@ific.uv.es

Associated production: Top quark pair + photon

- Production rate sensitive to tt-photon vertex
 - \rightarrow pair production measures tt-gluon
 - \rightarrow top decay and single top production probe tWb
- Require $pT(\gamma) > 8$ GeV, SM $\sigma t \bar{t} \gamma = 2.1 \pm 0.4$ pb

Significance 2.7 5 Expected 3.0 5

Associated production: Top quark pair + Z boson

- also important background to SUSY and BSM searches
- analysis also designed to measure ttW (not coupling)

- same-sign dilepton (ttV) or trilepton events (ttZ)
- now with updated generator unc. (Powheg-BOX, +50% syst.)

$$\sigma_{t\bar{t}Z} = 0.28^{+0.14}_{-0.11} (\text{stat.}) \,{}^{+0.06}_{-0.03} (\text{syst.}) \,\text{pb} \quad 3.3\sigma \qquad \text{NLO: } 0.137^{+0.012}_{-0.016} \,\text{pb}$$

$$\sigma_{t\bar{t}V} = 0.43^{+0.17}_{-0.15} (\text{stat.}) \,{}^{+0.09}_{-0.07} (\text{syst.}) \,\text{pb} \quad 3.0\sigma \qquad \text{NLO: } 0.306^{+0.031}_{-0.053} \,\text{pb}$$

CMS establishes ttV signal at 4.7 σ (V=W,Z) $\sigma(t\bar{t}Z) = 0.28 + 0.14 - 0.11$ (stat) +0.06 -0.03 (syst) PRL 110 (2013) 172002

Garzelli et al., JHEP 11 (2012) 056 Campbell, Ellis, JHEP 07 (2012) 052

CONF-2012-126

	SR
tīZ	0.85 ± 0.04
WZ+jets	0.06 ± 0.04
ZZ+jets	0.014 ± 0.014
$t\bar{t}W$	0.011 ± 0.008
$(t\bar{b}Z + \bar{t}bZ) + X (= jj, l\nu)$	0.125 ± 0.013
WZbbjj	0.065 ± 0.016
MC Total	1.13 ± 0.06
Fake lepton background	$0.0^{+1.6}_{-0.0}$
Observed	1

Candidate event (
$$e\mu\mu$$
)
 $E_{T}miss = 78 \text{ GeV}$
 $m_{\parallel} = 91 \text{ GeV}$
 $m_{T}(I,ETmiss) = 67 \text{ GeV}$
4 jets (2 b-tagged)

Top quark pair production in the continuum

Unique features of e+e- colliders: calculability and control over initial state

- Per-mil level uncertainty on inclusive cross-section
- Luminosity measured to similar level
- Beam energy to 10⁻⁴

Compare to 5% uncertainty in the cross-section prediction at the LHC

Electroweak couplings

LHC expected to reach ~10% precision on form factors governing tt-photon and tt-Z vertices

Long-term LHC prospects by Baur, Juste et al. (Snowmass 2005) Phys.Rev. D71 (2005) 054013

Top Couplings: pre-Snowmass Energy Frontier 2013 Overview arXiv:1309.1947

Electroweak couplings

The current at the ttX vertex:

$$\Gamma^{ttX}_{\mu}(k^2, q, \overline{q}) = ie \left\{ \gamma_{\mu} \left(\widetilde{F}^X_{1V}(k^2) + \gamma_5 \widetilde{F}^X_{1A}(k^2) \right) + \frac{(q - \overline{q})_{\mu}}{2m_t} \left(\widetilde{F}^X_{2V}(k^2) + \gamma_5 \widetilde{F}^X_{2A}(k^2) \right) \right\}$$

See talk by Nacho García

Electroweak couplings at LC

Measure 6 observables, extract 5 form factors

$$\begin{array}{cccc} \sigma(+) & \mathcal{A}_{FB}(+) & \lambda_{hel}(+) & (+=e_{R}^{-}) \\ \sigma(-) & \mathcal{A}_{FB}(-) & \lambda_{hel}(-) & (-=e_{L}^{-}) \end{array} \end{array} \Rightarrow \left\{ \begin{array}{cccc} F_{1V}^{\gamma} & * & F_{2V}^{\gamma} \\ F_{1V}^{Z} & F_{1A}^{Z} & F_{2V}^{Z} \end{array} \right\}$$

The cross section can be measured to 0.5% (stat. + lumi) The forward-backward asymmetry to 2% (stat. + syst.) The slope of helicity distribution to ~4% (stat. + syst.)

500/fb at 500 GeV yields 1-2 orders of magnitude better sensitivity than the LHC (300/fb at 14 TeV)

Adding to previous studies in TESLA TDR:

- simultaneous extraction of photon and Z form factors
- full simulation & reconstruction
- discussion of systematic effects (knowledge of polarization, energy, ...)

Top quark mass: motivation

Precision test of the SM

- SM EW fit yields relations between $m_{\rm H}$, $m_{\rm t}$ and $m_{\rm W}$
- Currently limited by m_w, must improve also ^ _s, sin² - ¹, m_z

Fate of the universe

- Depending on the value of the top quark mass the Higgs potential may go negative somewhere between EW and Planck scale (in the SM)

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice et al. '12, Alekhin, Djouadi, S.M. '12, Masina '12

Top quark mass

A "philosophical" question: how can we measure a quark mass?

Quark mass is not an observable.

Extract mass from an analysis that counts events:

- Total rate vs. differential
- Inclusive vs. Exclusive

Differential, exclusive

 \rightarrow invariant mass distribution of top decay products Total, inclusive

→ extract mass from inclusive cross-section

Top quark mass from l+jets events

ATLAS top mass summary

ATLAS m. summary - July 2013. $L = 35 \text{ pb}^{-1} - 4.7 \text{ fb}^{-1}$ (*Preliminary)								
ATLA CONF-2	S 2010, I+jets* 011-033, L _{int} = 35 pb ⁻¹				169.3	± 4.0	,	± 4.9
ATLA Eur. Phy	S 2011, I+jets rs. J. C72 (2012) 2046,	L _{int} = 1.04 fb ⁻¹		¢-11	174.53	\pm 0.61 \pm 0.43		± 2.27
ATLA CONF-2	S 2011, all jets* 012-030, L _{int} = 2.05 fb ⁻¹				174.9	± 2.1		± 3.8
ATLA CONF-2	S 2011, dileptor 012-082, L _{int} = 4.7 fb ⁻¹	n, m_{T2}*			175.2	± 1.6		± 3.1 2.8
ATLA CONF-2	S 2011, I+jets* 013-046, L _{Int} = 4.7 fb ⁻¹				172.31	$\pm 0.23 \pm 0.27$:	± 0.67	± 1.35
ATLA CONF-2	S 2011, dileptor 013-077, L _{Int} = 4.7 fb ⁻¹	n, m * lb		•	173.09	± 0.64		± 1.50
CMS 173.3	Average Septem $36 \pm 0.38_{stat.} \pm 0.9$	nber 2012 91 _{JSF⊕syst.}	I- IQI -	•		stat. uncertainty stat. ⊕ JSF ⊕ bJSF	- uncerta	inty
Tevatron Average May 2013 173.20 ± 0.51 _{stat.} ± 0.71 _{JSF⊕syst.}				I	A	total uncertainty TLAS Prelii	minar	у.
155	160	165	170	175 1	80	185	190	195 m _{top} [GeV]

Experimental intermezzo: jet energy scale

Many analyses are limited by the uncertainty on the Jet Energy Scale? What is it?

An estimate of the uncertainty on the calibration of jets.

Could the jet energy be 3% lower than we think?

How can we estimate/measure this uncertainty? How can we reduce it? MC-based: variations in response when we vary:

- Hadronic shower model (swap nominal with one that's not too far off)
- Material budget (within conservative, but reasonable range)
- ..

Data-driven methods take over:

- Calorimeter/tracker ratio
- photon + jet events

Constrain in data/kinematic fit

- W mass constraint

Typical uncertainty between 1 and 2% for intermediate energy Jets close to others are typically more uncertain Flavour-dependence (quark vs. gluon, c-jets, b-jets)

Theory uncertainties

- top quark is a colored object, final state is color neutral
- Can estimate colour reconnection uncertainty from MC studies
- Many (precise) measurements in different kinematic regimes give confidence that this is under control

Interpretation

Measured mass (~MC mass) is identified with pole mass This introduces an uncertainty of XXXX MeV

A long debate follows...

Top quark mass

Alternative methods:

Endpoint measurement

(CMS, arXiv:1304.5783, currently 2 GeV uncertainty)

Extraction from J/psi spectra, m_{bl}

Extracted from total cross section

 $-\Delta m/m \sim 0.2 \Delta \sigma/\sigma$ (currently > 5 GeV uncertainty)

ttg cross-section (arXiv:1303.6415)

Threshold scan at a future lepton collider

A scan of the beam energy through the $t\bar{t}$ production threshold

(nominally: 10 points of 10/fb each)

Threshold scan at the LC

Luminosity spectrum changes shape (ILC & CLIC) Full simulation & reconstruction, including background Evaluation/discussion of systematics

Top quark mass at an LC

5% uncertainty non-tt bkg \rightarrow 18 MeV 10⁻⁴ precision on $\sqrt{s} \rightarrow$ 30 MeV 20% uncertainty on lumi-spectrum \rightarrow 75 MeV IS top mass and α_s combined 2D fit m_t stat. error34 MeV m_t theory syst. (1%/3%)5 MeV / 8 MeV α_s stat. error0.0009 α_s theory syst. (1%/3%)0.0008 / 0.0022

A precise measurement ($\Delta m_{f} < 100$ MeV) can be achieved

+ $\Delta \alpha s < 0.001$ (+ $\Delta \Gamma_t < 30$ MeV) (+ $\Delta y_t/y_t \sim 35\%$ *)

Top quark mass: a program for 3 decades

Tevatron: discovery (1995) and develop full characterization

- legacy $m_t = 173.18 \pm 0.56 \pm 0.75 \text{ GeV}$

LHC: continue conventional approach

- Statistical error no longer an issue
- Jet Energy Scale (and b-JES) are tough, but can be treated*
- Major drawback: theory interpretation (see JA this morning)

LHC: extract top mass from measured cross-section

- Achieved 3% precision, with a rigorous interpretation
- Refine to increase sensitivity*

LHC: new methods based on kinematical observables

- B hadron decay length
- lepton p_T
- J/ψ +lepton from W
- Endpoints

Future LC: threshold scan

- 100 MeV precision!*

W polarization in top quark decays

Juan Antonio certainly explained how W polarization (helicity fractions) can be extracted from the distribution of $\cos \theta^*$

W polarization in top quark decays

http://inspirehep.net/record/1114314

Source	Uncertainties					
	F_0	F_{L}	$F_{ m R}$			
Signal and background modelling						
Generator choice	0.012	0.009	0.004			
ISR/FSR	0.015	0.008	0.007			
PDF	0.011	0.006	0.006			
Top quark mass	0.016	0.009	0.008			
Misidentified leptons	0.020	0.013	0.007			
W+jets	0.016	0.008	0.008			
Other backgrounds	0.006	0.003	0.003			
Method-specific uncertainties	0.031	0.016	0.035			
Detector modelling						
Lepton reconstruction	0.013	0.006	0.007			
Jet energy scale	0.026	0.014	0.012			
Jet reconstruction	0.012	0.005	0.007			
b-tagging	0.007	0.003	0.004			
Calorimeter readout	0.009	0.005	0.004			
Luminosity and pileup	0.009	0.004	0.005			
Total systematic uncertainty	0.06	0.03	0.04			

Searches with top quarks

Associated produciton with bottom quarks

Important background to ttH(\rightarrow bb) channel Interested in fraction of events with b-flavour

• in σ(ttbb)/σ(ttjj) many systematics cancel

Theory

- Madgraph 1.2%, Powheg 1.3%
- NLO calculations predict 4.7% (parton level, can't be compared)

$\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 3.6 \pm 1.1(stat.) \pm 0.9(sys.)\%$ Bevilacqua, Czakon, Papadopoulos et al., PR D84 (2011) 114017

Associated production with Higgs bosons

Can access top-Higgs Yukawa coupling

• given enough luminosity

In 2011 looked at ttH ($H \rightarrow bb$)

- divide sample in categories #jets #b-jets
- construct likelihood (ATLAS) or neural network (CMS)

Not yet sensitive

• analysing 2012 data

Limits for mH=125GeV

- CMS 4.6 x SM (3.8)
- ATLAS 13.1 x SM (10.5)

The H boson

Direct determination of couplings to 3rd-generation quarks; a crucial piece of the puzzle

Difficult... http://arxiv.org/abs/arXiv:0910.5472

A process that is going to be very important in phase II of the LHC

Further searches with (boosted) top quarks

The "boosted production" threshold

 $\sqrt{s} >> E_{EW}$

Even the heaviest SM particles often acquire $p_{T} > m$

→ abundant production of "boosted objects"

A top factory, our first sample of boosted top quarks

Expected number of tt events in three different kinematical remies	Tevatron run II 10 fb ^{.1} @ 1.96 TeV	LHC 2012 20 fb-1 @ 8 TeV	LHC design 300 fb ⁻¹ @ 13 TeV	Very LHC 300 fb ^{.1} @ 33 TeV	
Inclusive tt production	57.000	2.600.000	155.000.000	1.000.000.000	
Boosted production: $M_{tt} > 1$ TeV	25	30.000	3.000.000	46.000.000	
Highly boosted: $M_{tt} > 2 \text{ TeV}$	o	300	47.000	2.300.000	
Enough to discov quark, no booste	Millions of boosted top quarks, 50.000 extremely boosted events				

M.V., Boosting sensitivity to new physics, CERN Courier, Oct 2012

Results obtained with MCFM, J. M. Campbell and R. K. Ellis, arXiv:1204.1513 [hep-ph] MSTW2008NLO PDFs

The boosted regime

Now apply the classical strategy to this event. It won't work

What's going on here? Top quark p_T >> m_t

What information is no longer resolved? Jets merge Lepton not isolated

What bit of information didn't we use? Back-to-back t and t

Boosted top quarks

Classical algorithm is great for top quarks at rest, but is not adequate for boosted top quarks

Problem: merging jets, lepton isolation, missing $\boldsymbol{p}_{_{\mathrm{T}}}$ resolution

Missed opportunity: reconstruction of top quark is easier in boosted regime

arXiv:1207.5644

TAE2013

marcel.vos@ific.uv.es

Boosted objects: A Probe of beyond the Standard Model physics.

Boosting BSM sensitivity

Let's define "boosted object" by comparing the standard approach (reconstruct components and combine) **to Mike Seymour's alternative** (find composite object and decompose).

Rules of thumb for maximum jet radius parameter for 2-body decay:

 $R < 2m/p_{T}$ (always resolve two jets)

 $R > 3m/p_T$ (capture full decay in a single jet 75% of cases)

W boson at rest p_T ~ 240 GeV

 $p_{T} \sim 400 \text{ GeV}$

- \rightarrow use resolved approach
- \rightarrow coexisting algorithms,

can resolve with R=0.4, or contain in R=1

 \rightarrow boosted regime

cannot always resolve with R=0.4

Boosted objects and fat jets

✓ Boosted objects must be caught in fat jets

Fat jet, according to Colin G.

Boosted objects: a probe of beyond the standard model physics

Report of the hadronic working group of the BOOST2010 workshop, held at Oxford University, from the 22^{nd} to the 25^{th} of June, 2010.

The participants of BOOST2010:

A. Abdesselam¹, E. Bergeaas Kuutmann², U. Bitenc³,
G. Brooijmans⁴, J. Butterworth⁵, P. Bruckman de Renstrom⁶, D. Buarque Franzosi⁷, R. Buckingham¹,
B. Chapleau⁸, M. Dasgupta⁹, A. Davison⁵, J. Dolen¹⁰,
S. Ellis¹¹, F. Fassi¹², J. Ferrando¹, M.T. Frandsen¹,
J. Frost¹³, T. Gadfort¹⁴, N. Glover¹⁵, A. Haas¹⁶, E.
Halkiadakis¹⁷, K. Hamilton¹⁸, C. Hays¹, C. Hill¹⁹,
J. Jackson²⁰, C. Issever¹, M. Karagoz¹, A. Katz²¹,
L. Kreczko²², D. Krohn²³, A. Lewis¹, S. Livermore¹,
P. Loch²⁴, P. Maksimovic²⁵, J. March-Russell²⁶, A.
Martin²⁷, N. McCubbin²⁰, D. Newbold²², J. Ott²⁸,
G. Perez²⁹, A. Policchio¹¹, S. Rappoccio²⁵, A.R.
Raklev^{30,31}, P. Richardson¹⁵, G.P. Salam^{23,32,33},
F. Sannino³⁴, J. Santiago³⁵, A. Schwartzman¹⁶, C.
Shepherd-Themistocleous²⁰, P. Sinervo³⁶, J. Sjoelin³⁷, M.
Son³⁸, M. Spannowsky³⁹, E. Strauss¹⁶, M. Takeuchi⁴⁰, J.
Tseng¹, B. Tweedie^{25,41}, C. Vermillion^{11,42,43}, J. Voigt²⁸,
M. Vos⁴⁴, J. Wacker¹⁶, J. Wagner-Kuhr²⁸, and M.G.
Wilson¹⁶

(arXiv:1012.5412 [hep-ph])

marcel.vos@ific.uv.es
Tools & Technniques: reconstruction

"clustering" jet algorithms use a distance or metric: $d_{ij} = \min(p_{Ti}{}^{2p}, p_{Tj}{}^{2p}) * R_{ij}{}^{2}/R^{2}$ $d_{iB} = \min(p_{Ti}{}^{2p}, p_{Tj}{}^{2p})$ $p=0 \rightarrow Cambridge Aachen (C/A)$ $p=1 \rightarrow k_{t}$ $p=-1 \rightarrow anti-k_{t}$

- Anti-kt is infra-red safe and with nearly circular footprint
- k_t yields clustering that is intrinsically ordered in p_T scale
- C/A clustering sequence is ordered by angle

Anti- k_t = default jet algorithm for ATLAS/CMS is anti- k_t

R=0.4, 0.6, or 0.5, 0.7, with some support for large-R jets

TAE2013

Jet mass

Pythia: $500 < p_T < 600 \text{ GeV}$ Anti k_T (R=1.0) particle-level

Top jet $\rightarrow m_j \sim m_t$ Background $\rightarrow m_i \mu \alpha_s p_T R$

Jet grooming improves performance:

- resolution
- background rejection
- Pile-up resilience

jet mass [GeV]

Jet substructure

There is more to a jet than a three-vector

75

Detector response

Can we measure jet substructure precisely and reliably?

TAE2013

Tools and Techniques: grooming

Jet substructure is often hidden: ✓ Soft emissions inside the jet ✓ Underlying event ✓ Pile-up* (identified by associating jets/clusters to tracks/vertices)

Jet grooming techniques to remove the "softest" parts (at large angle) of the jet:

✓ Filtering: break jet into subjets on angular scale R_{filt}, take n_{filt} hardest subjets Butterworth, Davison, Rubin & Salam
'08

Trimming: break jet into subjets on angular scale R_{trim} , take all subjets with $p_{T,sub} > \epsilon_{trim} p_{T,jjet}$ Krohn, Thaler & Wang '09

✓ **Pruning:** as you build up the jet, if the two subjets about to be recombined have $R > R_{prune}$ and min(pt1, pt2) < ε_{prune} (p_{T1} + p_{T2}), discard the softer one. Ellis, Vermilion & Walsh '09

Now, after seeing with our own eyes what pile-up can do to jet, is a good time to convince your experiment to support these

Revisit/reoptimize based on experience on data

Boost2010 report ignored the variable R option...

TAE2013

Measuring jet mass

OK! This works for foreseeable future

Boosted top quarks (II)

A graphical account of the same argument, with real events

hadronic top candidate

M_{tt}~ 2.5 TeV arXiv:1207.2409

Run Number: 180144, Event Number: 4367150 Date: 2011-04-22 09:46:15 EDT

Boosted top quarks (III)

2010 data: the first five events of control sample

High-mass (> 700 GeV) pairs in the stand when reclustered with R = 1.0 the three je single jet with:

 $m_j = 197 \text{ GeV}$ (expected: m_t) $sqrt(d_{12}) = 110 \text{ GeV}$ (expected $\sim m_w$) $sqrt(d_{23}) = 40 \text{ GeV}$ (expected ...)

The world's first "boosted object

TAE2013

Run Number: 166658, Event Number: 3453393 Date: 2010-10-11 23:57:42 CEST

80

Recluster @ R=1 First observation of a "boosted object"

Boosted top quarks

tt resonances

Depending on what you're looking for, the differential) cross-section, the charge asymmetry, same-sign top quark search, tt + missing energy, may be more relevant

If you're still here on Saturday, come to the BSM new phenomena discussion

TAE2013

82

ATLAS resonance searches

Better (more specialized) algorithms allow us to achieve better sensitivity on the same data set! This is only possible with a sufficiently granular detector system

resonance mass [GeV]

Summary post-ICHEP2012: Classical and boosted algorithms have complementary low and high mass sensitivity.

Final state	di-lepton	lepton+jets	boosted I+jets	Boosted fully had	combined I+jets
Preprint/publication	EPJC72	EPJC72	JHEP1209	2012-102	2012-136
Data set	2 fb ⁻¹	2 fb ⁻¹	2 fb ⁻¹	4.7 fb ⁻¹	4.7 fb ⁻¹
Z' limits [TeV]	-	0.55 - 0.88	0.6 - 1.15	0.7 - 1.3	0.7 - 1.7
g _{κκ} limits [TeV]	0.5 - 1.08	0.5 - 1.13	0.6 - 1.5	0.7 - 1.5	0.7 - 1.9

TAE2013

Resonance searches

Use Z' limits as a benchmark to monitor progress

l+jets analyses only. Searches in fully hadronic events are close behind!

Electro-weak physics

Study of W and Z production:

- test of the Standard Model predictions
- related to Higgs boson production through vector-boson fusion
- important backgrounds for searches with leptons
- access to Parton Density Functions (strange)
- vector-boson scattering

Grand summary

TAE2013

An even grander summary

87

Z+jets

A very good laboratory to study the emission of additional jets

Vector boson + N jets definitely requires specialized tools (multi-leg Monte Carlo) beyond N=1,2

http://arxiv.org/abs/1304.7098

Z+jet ratios

Measuring ratios some of the uncertainties come down considerably

http://benasque.org/2012imfp /talks_contr/319_Mangano.pdf

Measurements are also available for W+b, W+c production

W production is asymmetric

W production has a distinctive charge asymmetry

Used, for instance, to determine the background level in studies of top pair production

Proof of the sensitivity to the proton make-up

WW cross-section

Pairs of vector bosons: SM production + possible BSM contributions

No new physics, so far!

Vector boson scattering

TAE2013

Vector-boson scattering

Vector boson scattering amplitude expected to go crazy at ~ 1 TeV if there were no Higgs boson Study might shed some light on the exact nature of the electro-weak symmetry breaking mechanism Requires very large integrated luminosity... a good benchmark for a hi-lumi LHC I hope you enjoyed this tour of the LHC ...